

Action full title:

Universal, mobile-centric and opportunistic

communications architecture

Action acronym:

UMOBILE

Deliverable:

D3.1. “UMOBILE architecture report (1)”

Project Information:
Project Full Title Universal, mobile-centric and opportunistic communications architecture

Project Acronym UMOBILE

Grant agreement number 645124

Call identifier H2020-ICT-2014-1

Topic ICT-05-2014 Smart Networks and novel Internet Architectures

Programme EU Framework Programme for Research and Innovation HORIZON 2020

Project Coordinator Prof. Vassil is Tsaoussidis, Democritus University of Thrace

2

Deliverable Information:

Deliverable Number-title D3.1 UMOBILE architecture report (1)
WP Number WP3

WP Leader Sotiris Diamantopoulos
Task Leader Sotiris Diamantopoulos

Authors COPELABS: Paulo Mendes, Waldir Moreira

DUTH: Sotiris Diamantopoulos, Christos-Alexandros Sarros, Dimitris

Vardalis, Ioannis Komnios, Vassilis Tsaoussidis

UCL: Ioannis Psaras, Sergi Rene

UCAM: Adisorn Lertsinsrubtavee, Carlos Molina-Jimenez, Arjuna

Sathiaseelan

COPELABS: Paulo Mendes, Waldir Moreira, Luis Amaral Lopes

TECNALIA: Iñigo Sedano, Susana Sanchez Perez

SENCEPTION: Rute Sofia

Contact diamantopoulos.sotiris (at) gmail.com , csarros (at) ee.duth.gr

Due date 17/11/2016
Actual date of submission 17/11/2016

Dissemination Level:

PU Public X

CO Confidential, only for members of the consortium (including the Commission Services)

Cl Classified, as referred to in Commission Decision 2001/844/EC

Document History:

Version Date Description

1.0 31/05/16 Initial definition of the architecture

1.1 11/11/2016 Revised definition of the architecture – 1st
draft to the consortium

1.2 16/11/2016 Revised definition of the architecture – 2nd
draft to the consortium

1.3 17/11/2016 Revised definition of the architecture – Final
version submitted to the EC

3

Executive Summary

Background: This report is written in the framework of WP3 “System and node architecture
development” WP3“ of the UMOBILE project. The deliverable aims to describe work on the

UMOBILE core architecture and is accompanied by the implementation of the architecture so far
and the documentation on the code.

Objectives: The core activity of WP3 is the design and implementation of the UMOBILE platform.

Departing from the existing properties of DTN and ICN, we establish an architectural framework
that extends connectivity options by being delay-tolerant and by exposing a common

information-centric abstraction to applications.

UMOBILE aims to advance networking technologies and architectures towards the conception
and realization of Future Internet. In particular, UMOBILE extends Internet (i) functionally – by

combining ICN and DTN technologies within a new architecture, (ii) geographically – by allowing

for internetworking on demand over remote and isolated areas – and (iii) socially – by allowing
low-cost access and free user-to-user networking.

The goal of this document is to provide a detailed description, along with a manual when

applicable, of the new features, mechanisms and applications that have been developed so far as

part of the UMOBILE architecture. Implementation code so far is also provided. The basis for
UMOBILE platform is the Named Data Networking (NDN) architecture, one of the most

promising ICN implementations, and UMOBILE features are being built in line with NDN. The
result is a novel architecture that allows for new services and applications.

In the rest of the document, we present our vision and provide the full architectural picture, as

well as the specific modules and their interconnections in the rest of the document.

NOTE (to be removed from the public version):
D3.1 provides the detailed view of the UMOBILE architecture, while D3.3 is a high-level
description. Therefore, it is suggested that the reader/reviewer starts from D3.3 first, in order
to get the high-level overview of the architecture and then go into the details in D3.1.

4

Table of contents

Executive Summary .. 3

List of Definitions .. 5

1. Introduction... 9

2. UMOBILE Vision... 12

3. UMOBILE starting points.. 15

4. UMOBILE architecture ... 18

4.1 Forwarding ... 22

4.1.1. DTN tunnelling ... 22

4.1.2. NREP: Name-based Replication Priorities... 29

4.1.3. Opportunistic Off-path Content Discovery ... 33

4.2. Northbound APIs ... 36

4.2.1. Contextualisation (PerSense Mobile Light) ... 36

4.2.2. PUSH services .. 41

4.2.3. KEBAPP application sharing platform... 46

4.2.4. Short Messaging Application ... 51

4.3. QoS and Congestion Control ... 53

4.3.1 Service migration .. 54

4.3.2. INRPP: In-Network Resource Pooling Protocol ... 60

4.4. Routing module... 63

4.4.1. NDN-Opp: NDN framework for Opportunistic Networks ... 63

4.4.2. SOCIO: Social-aware opportunistic networking framework ... 69

5. Conclusion ... 79

References .. 80

5

List of Definitions

Term Meaning

AP An access point (AP) is a networking hardware device that allows a
WiFi compliant device to connect to a wired network.

Application Computer software design to perform a single or several specific tasks,
e.g. a calendar and map services.

BER In digital transmission, the number of bit errors is the number of
received bits of a data stream over a communication channel that have
been altered due to noise, interference, distortion or bit
synchronization errors. The bit error rate (BER) is the number of bit
errors per unit time.

BP Bundle Protocol (BP) defines the bundle as the core unit of the DTN
architecture; a bundle is a series of data blocks that is routed in a store -
and-forward manner between nodes over various transport networks.

BT Bluetooth is a wireless technology standard for exchanging data over
short distances from fixed and mobile devices, and building personal
area networks (PANs).

CIT Carried Interest Table is responsible for keeping up-to-date
information concerning the data interests of the current node along
with its social weights towards other nodes with whom it socially
interacts.

CM The Content Manager (CM) module in Oi! is responsible to manage all
the messages to be sent, as well as received messages.

Content Content refers to a piece of digital information that is disseminated and
consumed by the end user equipment.

CS A temporary cache of Data packets the router has received. Caching
NDN Data packet helps satisfy future Interests for the same data faster.
Various replacement strategies are implemented for the content store.

Data Data is raw. Data is numbers that have no interpretation.

Data packet In NDN, once the Interest reaches a node that has the requested data,
the node will return a Data packet that contains both the name and the
content, together with a signature by the producer’s key which binds
the two. This Data packet follows in reverse the path taken by the
Interest to get back to the requesting consumer.

6

DM Decision Maker is responsible for deciding whether replication should
occur based on the level of social interaction towards specific interests,
based on the SCORP algorithm.

DTN Delay Tolerant Networking (DTN) supports interoperability of other
networks by accommodating long disruptions and delays between and
within those networks. DTN operates in a store-and-forward fashion
where intermediate node can temporarily keep the messages and
opportunistically forward them to the next hop. This inherently deals
with temporary disruptions and allows connecting nodes that would
otherwise be disconnected in space at any point in time by exploiting
time-space paths.

EC European Commission

E2E In networks designed according to the end-to-end (E2E) principle,
application-specific features reside in the communicating end nodes of
the network, rather than in intermediary nodes, such as gateways, that
exist to establish the network.

FIB A routing table which maps name components to interfaces. The FIB
itself is populated by a name-prefix based routing protocol, and can
have multiple output interfaces for each prefix.

FN Forwarding Node is responsible for routing requests for services
towards the available copies in the service migration module.

Gateway Gateway typically means an equipment installed at the edge of a
network. It connects the local network to larger network or Internet. In
addition, gateway also has the capability to store services and contents
in its cache to subsequently provide localized access.

IBR-DTN IBR-DTN is a framework for DTN applications; its module-based
architecture with miscellaneous interfaces makes it possible to change
functionalities like routing or bundle storage just by inheriting a
specific class.

ICN Information-Centric Networking (ICN) supports efficient delivery of
both content and services by identifying information by name rather
than the actual location. This decoupling of the information from its
actual location breaks the need for end to end connectivity thus
enabling much wider flexibility for efficient content and service
retrieval. ICN also inherently supports caching thus enabling much
better localised communications.

Information Information is about understanding what the data is telling us. It
provides an understanding about what is happening to users so we can
make it easier for them to get the content they need when they need it.

7

Interest A parameter capable of providing a measure (cost) of the “attention” of
a user towards a specific content in a specific time instant. Users can
cooperate and share their interests.

Interest
packet

In NDN, a consumer puts the name of a desired piece of data into an
Interest packet and sends it to the network. Routers use this name to
forward the Interest toward the data producer(s).

NACK A negative-acknowledge character (NAK or NACK) is a transmission
control character sent by a station as a negative response to the station
with which the connection has been set up.

NDN Named Data Networking (NDN) is a Future Internet architecture that
aims to transition today's host-centric network architecture into a data-
centric network architecture. In particular, users will no longer need to
retrieve data from a specific physical location; instead, users will be
able to search for content, independent of the location where the
content is stored.

NDN-CXX NDN-CXX library (NDN C++ library with eXperimental eXtensions)
provides the various common services shared between different NDF
module.

NFD The NDN Forwarding Daemon

Node A wireless or wired capable device.

OPEX An operating expense (OPEX) is an ongoing cost for running a product,
business, or system. Its counterpart, a capital expenditure (CAPEX), is
the cost of developing or providing non-consumable parts for the
product or system.

OS An operating system (OS) is system software that manages computer
hardware and software resources and provides common services for
computer programs. The operating system is a component of the
system software in a computer system. Application programs usually
require an operating system to function.

PerSense PerSense is an open-source sensing platform that senses the
environment of a user and provides relevant services.

PIT A table that stores all the Interests that a router has forwarded but not
satisfied yet. Each PIT entry records the data name carried in the
Interest, its incoming and outgoing interface.

RT RT is the routing module in Oi! App

8

RTT Round-trip time (RTT) is the length of time it takes for a signal to be
sent plus the length of time it takes for an acknowledgment of that
signal to be received. This time delay therefore consists of the
propagation times between the two points of a signal.

SC Service Controller manages the mapping of publishers of services and
subscribers of services in the service migration module.

SEG Service Execution Gateway is the point of attachment for clients in the
service migration module.

Service Service refers to a computational operation or application running on
the network which can fulfil an end user’s request. The services can be
hosted and computed in some specific nodes such as servers or
gateways. Specifically, services are normally provided for
remuneration, at a distance, by electronic means and at the individual
request of a recipient of services. For the purposes of this definition; “at
a distance” means that the service is provided without the parties being
simultaneously present; “by electronic means” means that the service
is sent initially and received at its destination by means of electronic
equipment for the processing (including digital compression) and
storage of data, and entirely transmitted, conveyed and received by
wire, by radio, by optical means or by other electromagnetic means; “at
the individual request of a recipient of services” means that the service
is provided through the transmission of data on individual request.
Refer to D2.2 for further details.

SLA Service-level agreement, a contractual agreement on the level of service
to be provided by a service provider to a customer.

Social trust Trust which builds upon associations of nodes is based on the notion of
shared interests; individual or collective expression of interests;
affinities between end users.

9

1. Introduction

The main objective of UMOBILE is to develop a mobile-centric, service oriented architecture that

efficiently delivers content and services to end-users. By efficiently we mean that

content/services are reliably available in spite of impairments of the communication
infrastructure, and with the expected quality of service. UMOBILE decouples services from their

origin locations, shifting the host-centric paradigm to a new paradigm, one that incorporates

aspects from both information-centric and opportunistic networking with the ultimate purpose

of delivering an architecture focused in: i) improving aspects of the existing infrastructure (e.g.,
keeping traffic local to lower delays and OPEX); ii) improving the social routine of Internet users

via technology-mediated approaches; iii) extending the reach of services to areas with little or
no infrastructure (e.g., remote areas, emergency situations).

UMOBILE aims to push network services (e.g., mobility management, intermittent connectivity

support) and user services (e.g., pervasive content management) as close as possible to the end-
users. By pushing such services closer to the users, we can optimize, in a scalable way, aspects

such as bandwidth utilization and resource management. We can also improve the service

availability in challenged network environments. For example, users in some areas may suffer

from intermittent and unstable Internet connectivity while they are trying to access Internet
services.

To achieve ubiquitous, local and edge-based services, the proposed UMOBILE architecture

combines two emerging architecture and connectivity approaches: Information Centric

Networking (ICN) and Delay Tolerant Networking (DTN). The aim is to build an architecture that
defines a new service abstraction that brings together both information centric as well as delay
tolerant networking principles into one single abstraction.

In this document, we describe the UMOBILE architecture in detail. We place special focus on the
new modules developed in order to:

• Achieve the integration of ICN and DTN, to enable delay-tolerant and opportunistic
communications in an information-centric framework.

• Allow for new services at the edge of the network.

• Assist in usage contextualisation to develop new types of applications.

• Consolidate the architecture with novel congestion control, QoS and routing mechanisms.

We analyse the individual components in the following sections. Our goal is to integrate all

modules into a unified UMOBILE platform that will provide the aforementioned functionality.

As detailed at D3.3, the high-level description of the UMOBILE architecture, the proposed

UMOBILE architecture consists of two main parts, one of elements in the fixed part of the
network (e.g., routers, gateways, access points) and one for mobile devices (focusing mainly on

Android OS at the moment).

10

A prototype of the platform will comprise:

1. The UMOBILE Access-Point/Router

The UMOBILE Access-Points/Routers are devices deployed in the fixed part of the network or

onboard mobile nodes (e.g., UAVs), enabling a multitude of network-related operations. In
particular, these devices employ the UMOBILE platform to cache content, execute services, act

as proxies to the Internet, allow for granular QoS and QoE application interfaces, ensure data
delivery even under adverse network conditions, etc.

2. The UMOBILE Smartphone daemon

This is an application, running as a daemon on end-user devices such as smartphones, also

enabling multiple network-related operations. More specifically, this daemon employs the

UMOBILE platform to integrate modules to opportunistically transfer between nodes based on

social metrics, an application sharing framework, a module to infer connectivity patterns, delay -

tolerant networking to increase reliability, along with smart routing and forwarding engines.
Applications can exploit the UMOBILE Smartphone daemon to provide novel communication

operations.

3. The UMOBILE Service

The UMOBILE Service exploits both the UMOBILE Access Points and Smartphone daemons to
provide interested parties with an innovative communication paradigm. The UMOBILE Service

can be employed, among others, to support communications in emergency situations, and to
improve the daily routine of end-users. It can be employed in different scenarios.

Apart from describing all UMOBILE architectural components, the present deliverable also
includes:

 Code on the integration of NDN and IBR-DTN (available in zip file, documentation is

included);

 Code on the migration of a simple Web server;

 Code of the Oi! Instant Messaging application (available in GitHub);

 Code of the SOCIO routing framework (available in GitHub);

 Guidelines to download and test the PerSense Mobile Light application, and

 Technical report on Oi! and SOCIO (available in zip file).

The document is organised as follows:

 Section 2 provides an insight to the vision of UMOBILE and highlights how each UMOBILE

feature contributes to this vision,

 Section 3 provides an introduction to Named Data Networking, as the starting point of

the UMOBILE architecture.

 Section 4 presents the full architectural picture, along with the new services, mechanisms

and apps developed as part of the UMOBILE platform

11

 Section 5 concludes the document.

12

2. UMOBILE Vision

In D3.3, we described the UMOBILE architecture and highlighted the key services that the

proposed architecture will provide. Figure 1 (extracted from D3.3) provides an overview of the
UMOBILE platform, in terms of actors and connectivity options involved.

UMOBILE
Hotspot

Isolated
UMOBILE
Hotspot

Internet

WiFi Direct
Group

UMOBILE
Domain

Internet
Domain

UMOBILE Gateway

Service
Manager

UMOBILE
UAV

Content
Provider

UMOBILE
Router

UMOBILE
end-user

Figure 1: High-level design of the UMOBILE architecture

The actors involved in the UMOBILE architecture include:

 UMOBILE-enabled mobile devices (i.e., smartphone, tablet), used to send and receive

participatory data (e.g. photos, short messages) as well as opportunistic data (e.g.

atmospheric pressure, temperature, noise, roaming patterns).

 UMOBILE-enabled hotspots able to collect and relay relevant information (e.g., alert

messages, instructions from emergency authorities), host some instantiated services or

13

store collected data, check its validity and perform computational functions to increase

the value of the information to the civil authorities.

 UMOBILE-enabled UAV devices or other vehicles able to collect and relay relevant
information and connect two isolated areas.

 UMOBILE-enabled gateways/proxies that provide interconnectivity between UMOBILE
domain and the Internet domain.

 UMOBILE Routers that use UMOBILE protocols to support Service migration and the QoS
mechanisms implemented in this project.

The aim of the UMOBILE project is to provide an architecture that merges information-centric

networking with delay-tolerant networking in order to efficiently operate in different network
situations, reaching disconnected environments and users and providing new type s of services.

These services can be exploited from a variety of applications (examples of which include
opportunistic chat and news apps). Having already described in detail the envisioned UMOBILE

services in D3.3, in this deliverable we focus on the specific enhancements and modifications of
the NDN platform that are required to provide these new services.

In particular, we build the UMOBILE architecture using the NDN architecture as our starting

point and:

 Build a new delay-tolerant face in the NDN architecture. This DTN face is used in
opportunistic and disruptive scenarios and delivers packets to a Bundle Protocol

implementation (IBR-DTN1), which is then responsible for their delay-tolerant

transmission;

 Develop a novel framework (NDN-Opp) that natively enables opportunistic

communications over NDN and supports social-aware routing. In this context, a new WiFi
Direct face is introduced and two new applications are created: a chat app and a news

app;

 Provide two new types of services that can be used in a variety of scenarios: a service

migration platform that can move services closer to the edge of the network where they

can be accessed significantly faster, even in cases when the remote server is not available

and a push service for cases when the user needs to push data to the network (e.g. in cases

of emergency);

 Propose a new application-centric naming framework (KEBAPP) [9], where applications
share common name-spaces and further support the use of a keywords;

 Employ novel mechanisms to cope with extreme situations (e.g. disaster cases): an

opportunistic off-path content discovery mechanism that exploits cached content in both

in-network caches and end-users' devices to facilitate content retrieval even when the

original server is not available, as well as a name-based replication priorities scheme
(NREP)[4] that favours spreading of the most important messages when normal

communications are disrupted and traffic is increased.

1 https://www.ibr.cs.tu-bs.de/projects/ibr-dtn/

14

 Introduce a new congestion control algorithm (INRPP)[15] which pools bandwidth and

in-network cache resources in a novel congestion control framework to reach global

fairness and local stability.

 Develop a new smart routing framework that also takes into consideration user context

and behaviour.

 Introduce the contextual manager which is based on the PerSense Mobile Light tool, as a

UMOBILE module that captures data from the user environment (network mining) and

that shall have as output routing metrics as well as user/usage recommendations suitable
for e.g. applications or service management.

An overview of the different components and their contributions to the architecture is given
in the image below:

Figure 2: UMOBILE architecture conceptual overview

15

3. UMOBILE starting points

The aim of UMOBILE is to build an architecture that defines a new service abstraction, bringing

together information-centric, delay-tolerant, and opportunistic communications principles into

one single abstraction. To achieve that, UMOBILE uses Named Data Networking (NDN) - one of
the most promising ICN implementations - as a starting point. We modify and enhance the NDN

architecture, in order to support delay-tolerant and opportunistic communications naturally,

building an integrated platform that facilitates communications in disruptive environments at
the edge of the network.

In this Section, we provide a brief description of NDN, which constitutes the basis for the
UMOBILE architecture.

Named Data Networking (NDN)

Named Data Networking (NDN)2 is a Future Internet architecture that aims to transition today's

host-centric network architecture into a data-centric network architecture. In particular, users
will no longer need to retrieve data from a specific physical location; instead, users will be able

to search for content, independent of the location where the content is stored. NDN changes the

semantics of network service from delivering the packet to a given destination address to

fetching data identified by a given name; NDN is a part of the broader information-centric
networking approaches. In ICN approaches, data becomes independent from location,
application, storage, and means of transportation, enabling in-network caching and replication.

Our initial approach was to introduce a “content layer” that intercepts communication, produces

unique location-independent names for requested content and stores the latter within the

network according to sophisticated caching policies. This way, the first stage of communication

between the user and the content source, i.e., the content resolution stage, follows the approach

of the current Internet and uses search engines, with the URL containing the name of the primary

content server, while later stages of communication are based on the location-independent
names for requested content.

However, in the UMOBILE project we focus on the mobile part of the network, where Internet

nodes are mobile and connectivity can be disrupted, e.g., in an emergency scenario where the
network might get fragmented and communication takes place in an ad hoc manner between

mobile devices. In this scenario, we have to overcome the difficulties of a host-centric and
connection-oriented communication paradigm. That said, we have come to realise that our initial

plans for operating on top of an extra content-layer would not provide huge benefits, but would
rather recycle old problems with regard to mobility support.

Thus, we decided to rely on pure ICN features to develop our UMOBILE architecture. Such

features include flexibility, host multihoming, content name consistency and resiliency and

2 https://named-data.net

16

provide a solid base to build an architecture for mobile, infrastructureless or delay-tolerant
networks.

Among all ICN architectures, we decided to use NDN as the baseline. NDN is the most promising

ICN architecture with more participants in the ICN community, and with more active projects

implementation-wise. We think NDN is a perfect candidate as a starting point for our UMOBILE
architecture.

To provide compatibility with existing mobile user devices, we devise the UMOBILE architecture

as a layer working on top of IP, where IP is used as a network enabler but only on a hop -by-hop

basis and is linked to the wireless connectivity. Also, in order to pr ovide connectivity between
any opportunistic UMOBILE device and the fixed network (IP network), we devise a UMOBILE

Proxy/Gateway able to translate interest packets to HTTP requests and vice versa.

Communication in NDN is driven by receivers i.e., data consumers, through the exchange of two
types of packets: Interest and Data. Both types of packets carry a name that identifies a piece of
data that can be transmitted in one Data packet.

 Interest: A consumer puts the name of a desired piece of data into an Interest packet and

sends it to the network. Routers use this name to forward the Interest toward the data

producer(s).
 Data: Once the Interest reaches a node that has the requested data, the node will return

a Data packet that contains both the name and the content, together with a signature by
the producer’s key which binds the two. This Data packet follows in reverse the path
taken by the Interest to get back to the requesting consumer.

The core of the NDN architecture lies in a network forwarder, the NDN Forwarding Daemon

(NFD). NFD is a modular and extensible forwarder that implements the forwarding of both

Interest and Data packets. To achieve that, it abstracts lower-level network transport
mechanisms into NDN Faces that provide the necessary abstraction on top of various lower level
transport mechanisms.

Several data structures are used to support forwarding of NDN Interest and Data, the most
important being:

 Content Store (CS): A temporary cache of Data packets the router has received. Caching

NDN Data packets helps satisfy future Interests for the same data faster. Various
replacement strategies are implemented for the content store.

 Pending Interest Table (PIT): A table that stores all the Interests that a router has

forwarded but not yet satisfied. Each PIT entry records the data name carried in the
Interest, its incoming and outgoing interface.

 Forwarding Information Base (FIB): A routing table which maps name components to

interfaces. The FIB itself is populated by a name-prefix based routing protocol, and can
have multiple output interfaces for each prefix.

17

NDN-CXX library (NDN C++ library with eXperimental eXtensions) provides the various common
services shared between different NDF module. On top of NDN-CXX, NDN supports:

 NDN Common Client libraries that provide APIs for Python, C++, Java and JavaScript,

 A routing module that supports conventional routing algorithms such as link state and

distance vector adapted to route on name prefixes and
 A repository for persistent storage.

Figure 3 depicts the high-level design of NDN architecture.

Figure 3: Conceptual depiction of Named Data Networking architecture

More information on NDN architecture can be found on Named Data Networking website:

http://named-data.net.

http://named-data.net/
http://www.umobile-project.eu/projectdocs/index.php/File:NDN.jpg

18

4. UMOBILE architecture

The UMOBILE architecture builds on the NDN platform. We have modified and expanded the

original NDN platform to enable new services while focusing on the edge of the network,

especially on opportunistic mobile communications. This way all communication opportunities
are exploited, achieving reliability and resilience even against extremely challenging network
conditions where availability of a central server is not to be taken for granted.

A new class of service is introduced and QoE for the end-user is improved by service localisation

as well as via user, usage and network contextualisation. In addition to the aforementioned

benefits, contextualization assists in the development of new strategies, e.g. “smart” forwarding
strategies which shall consider not only the network context, as well as the user networking
context to improve the network operation.

Our focus on the mobile part of the network does not mean that we do not consider the fixed –

typically wired – part. On the contrary, we exploit the properties of Information-Centric and

Delay-Tolerant Networks to design novel congestion control mechanisms, QoS schemes and
make relevant advancements to improve core network operation.

Our starting point is – as already noted – the original NDN architecture. Below, we provide the

modules present on the original NDN platform along with their interrelations.

Figure 4: NDN architectural modules

19

Software-wise, the UMOBILE platform extends NDN providing support for decentralised

services and opportunistic communications. The full architectural diagram of the UMOBILE

platform is provided in Fig. 5. Green boxes depict new components implemented in the

framework of the UMOBILE project, whereas yellow ones depict modified components of the
original NDN platform.

Figure 5 : UMOBILE architectural modules

New and updated software modules include:

a) New forwarding mechanisms

 DTN forwarding engine

We have implemented and integrated a DTN interface into the UMOBILE platform to

enable the forwarding of packets through DTN tunnelling. DTN forwarding provides

20

enhanced resilience in less than ideal networking conditions. It can also be employed as
a QoS class.

 NDN-Opp

NDN-Opp is enabling opportunistic communications in NDN. NDN-Opp provides an

updated version of the NDN Android implementation. It is based on social connections

between nodes, being able to forward packets in cases where typical NDN would fail. For
this proposes NDN-Opp makes use of the existing Best Route forwarding strategy.

 Name-based Replication Priorities (NREP)

NREP prioritises replication of packets based on their naming characteristics.

 Off-Path Content Discovery

Off-Path Content Discovery extends typical NDN forwarding providing alternative

content sources.

 Keyword-Based Application Sharing (KEBAPP) forwarding engine

We are developing a forwarding strategy to enable users to receive application-related
data locally shared by other users.

These forwarding strategies are developed in the framework of T3.3. NREP is developed in the
framework of T4.3.

b) New northbound APIs

 Contextualization – PerSense Mobile Light

PerSense Mobile Light module provides applications with contextual and behavioral

information, enabling the deployment of a new type of services, such as daily routine
improvement.

 Push services

UMOBILE extends the NDN communication model by supporting push services. Based on

this type of service, applications now are able to produce and forward content without

the need to receive an Interest packet first. This functionality can be particularly useful
in the implementation of emergency applications.

 KEBAPP

KEBAPP is an application sharing framework that enables the discovery of locally
available application data, without the need to contact a centralized service.

21

c) A multi-plane QoS mechanism

A multi-planar QoS mechanism is being developed in the framework of the UMOBILE project. At

the application level, the service migration framework is employed to move services closer to
the end-users when necessary. Complimentary, at the network level, INRPP takes advantage of

in-network caching and multiple path availability to mitigate congestion to observe QoS
requirements.

d) A smart forwarding module

The current implementation of the UMOBILE architecture for the smartphone daemon makes

use of the NDN-Opp routing engine to decide about which wireless neighbours should get a
packet copy. The first algorithm used by NDN-Opp is the Time-Evolving Contact Duration

approach [1] used by the dLife protocol [2,3]. In the next version the NDN-Opp routing engine

will integrate a novel routing scheme able to exploit the context information made available by
the Contextual Management module.

Moreover, a smart routing/forwarding module, currently under design in the framework of T3.3

along with the forwarding strategies mentioned above, is selecting the optimal forwarding
strategy, based on contextual information and application requirements.

In the following sub-sections, we describe the different functionalities provided by the UMOBILE

platform. Special focus is being placed on the advancements introduced within the scope of the
project.

22

4.1 Forwarding

Forwarding in UMOBILE follows typical NDN forwarding, by enhancing it with new forwarding

strategies and modifications that allow for delay/disruption tolerant and opportunistic

communications. We aim to provide support for challenging network scenarios with

intermittent connectivity, by enabling D2D communications over WiFi Direct and Bluetooth
links, or even remote WiFi hotspots.

We note that forwarding plays a special role in the UMOBILE architecture. In traditional IP
routing, routers exchange updates and select the best routes to construct the forwarding table

(FIB) but the forwarding plane by itself strictly follows the FIB. This results in a “smart

routing/dumb forwarding” approach that places the responsibility for data delivery on the
routing.

In UMOBILE, and following the NDN architecture, this relationship is changed. While routing
serves the same purpose (to compute routing tables to be used in forwarding NDN’s Interest

packets), the forwarding plane is now stateful: the routers keep state of the pendin g Interests to
guide Data packets back to requesting consumers. This allows for an intelligent forwarding

plane, as by recording pending Interests and observing Data packets coming back, each NDN

router can measure packet delivery performance and utilise multiple alternative paths to

improve performance. As a result, much of the routing functionality is offloaded to forwarding
Interest packets and the routing plane only needs to disseminate long-term changes in topology,
without having to deal with short-term churns.

Forwarding strategies are the decision makers in the forwarding daemon, deciding whether,

when and where to forward the Interests. A per-namespace selection of the appropriate strategy

is available, to fulfil the needs for different applications that utilise different naming schemes. By

utilising different naming schemes we can invoke different strategies and provide support for
multiple applications.

Below we detail the modules included in the UMOBILE architecture that are related to the

forwarding plane. Our major focus is on extending the reach of the communication paradigm, by
enabling and facilitating delay-tolerant and opportunistic communications that are currently
poorly supported by the NDN paradigm.

 4.1.1. DTN tunnelling

DTN is an emerging technology to support a new era in internetworking and interoperable

communications, either on Earth, or in Space. Like IP, DTN operates on top of existing network

architectures, creating a DTN overlay. In particular, DTN extends internetworking in the time
domain: rather than assuming a continuous end-to-end (E2E) path as IP networks do, DTN

operates in a store-and-forward fashion: intermediate nodes assume temporary responsibility

for messages and keep them until the next opportunity arises to forward them to the next hop.

While stored, messages may even be physically carried within a node as the node is transported:

23

the model is also termed store-carry-forward. This inherently deals with temporary

disconnections or disruptions and allows the connection of nodes that would else be
disconnected in space at any point in time.

Key design assumptions of Internet protocols such as short round-trip time (RTT), absence of
disruptions and continuous E2E path availability are challenged by such a concept.

The core of the DTN architecture lies in the Bundle Protocol (BP). BP defines the bundle as the

core unit of the DTN architecture; a bundle is a series of data blocks that is routed in a store -and-

forward manner between nodes over various transport networks. In order to improve the

efficiency of transfers, the DTN architecture supports several features, such as fragmentation
and custody transfer. DTN fragmentation and reassembly ensures that contact volumes are fully

utilised, avoiding retransmission of partially-forwarded bundles. Bundle fragmentation can be
performed either proactively at the sender or reactively at an intermediate node, if the reduction

of the size of a bundle is required to forward it. Reassembly can be performed either at the
destination or at some other node on the route to the destination. Custody transfer is another

important feature of the DTN architecture. In essence, custody transfer moves the responsibility
for reliable delivery of a bundle among different DTN nodes in the network. Whenever a node
accepts the reliable delivery responsibility of a bundle, it is called the “custodian” of this bundle.

As far as the existing DTN reference implementations are concerned, several implementations

have been developed during the last years, each targeting different applicability scenarios. IBR-

DTN is one of the most popular, well-documented and maintained implementations of the
bundle protocol designed for embedded systems. IBR- DTN can be used as framework for DTN

applications; its module-based architecture with miscellaneous interfaces makes it possible to
change functionalities like routing or bundle storage just by inheriting a specific class.

A new face connecting the UMOBILE platform with the IBR-DTN daemon has been developed in

the framework of the project. This allows the natural integration of NDN and DTN networking
platforms: it enables a whole set of new communication capabilities when necessary. In

particular, DTN enhances network operation by providing:

i) A new service class, namely less-than-best-effort. This shall support services with non-
stringent QoS requirements.

ii) Reliability to services in congested environments (e.g. in emergency cases)
iii) A means of congestion control, by reactively offloading traffic to DTN when congestion is

detected.
iv) A means of congestion avoidance, by proactively scheduling and/or shaping traffic to

reach its destination only when links are underutilized.

Architecturally, the DTN face is the module interconnecting the UMOBILE platform with the IBR-
DTN daemon, as depicted in Fig 6.

24

Figure 6. NDN-DTN tunnelling

Focusing on the DTN face module, its internal structure is depicted in Fig. 7.

Figure 7. Internal structure of the DTN face

25

The DTN face is employed in the forwarding plane as follows:

- In the non-infrastructure part of the network, it will be part of other forwarding strategies, so

that a node can automatically opt for a DTN tunnel to opportunistically reach a more “fixed” node
(e.g. an access point in the vicinity) instead of relying on typical NDN over TCP/UDP forwarding,

when it senses via the routing module that there is too much network volatility around. This
functionality is depicted in Fig. 8

Figure 8. DTN forwarding in volatile networking environments

- It will constitute a separate forwarding strategy, which will be employed a priori by

applications when network delays are to be expected (e.g. there is content delivery through
UAVs), in an opportunistic or infrastructure network context. This functionality is depicted in

Fig. 9

Figure 9. DTN forwarding accommodating delays inflicted by a UAV flying pattern

- It will be a part of a QoS scheme supporting a) services with non-stringent QoS requirements
(lower-than-best-effort QoS class), as depicted in Fig. 10, or b) services that prioritise reliability

in congested environments (e.g. in emergency cases), depicted in Fig. 11.

26

Figure 10. DTN forwarding providing a lower QoS class

Figure 11. DTN forwarding increasing reliability in congested environments

The DTN forwarding engine is employed either proactively by the application via the UMOBILE
naming API, or reactively, upon reception of congestion-related messages. In particular, an
application can use specific hashtags that notify the smart forwarding module that a DTN-related
strategy should be selected for the forwarding of the former’s data. This activation method is
depicted in Fig. 12. It should be noted unnecessary modules have been removed from the figure,
to improve intelligibility.

27

Figure 12. Activation of the DTN forwarding engine based on naming

The reactive DTN forwarding activation method is activated by NACK messages denoting
congestion. We should note here that, again, the application shall enable DTN forwarding via the
naming. The difference with the previous case is that now DTN forwarding is not enabled by
default, by only upon reception of NACK messages. This activation method is provided in Fig. 13.

28

Figure 13. DTN forwarding activation upon reception of congestion-related NACK message

In terms of system requirements, the DTN integration into the UMOBILE platform covers the
following requirements:
 R2: UMOBILE systems MUST be able to exchange data by exploiting every communication

opportunity through WiFi (structured, direct), 3G and Bluetooth, among UMOBILE systems,
operating even in situations with intermittent Internet connectivity)

 R13: UMOBILE systems MUST be able to provide the services to the end users when there is

no Internet connectivity)  

29

 4.1.2. NREP: Name-based Replication Priorities

Figure 14. NREP modules

NREP has first been devised aimed at providing the best solution for emergency services

transmissions using ICN opportunistic communications. These services will be supported by

using replication, optimised by prioritisation rules, integrated within the information message’s
name to favour spreading of the most important messages. For example, in case of an emergency

in a disaster area, we consider messages from first responders as more important than messages

between friends. We focus on cases where the mobile network infrastructure is not available
and therefore messages have to be stored, carried and forwarded by mobile devices.

In this task, we attempt to leverage the benefits of ICN in the aftermaths of a disaster, where
infrastructureless delay tolerant communication becomes essential in order to deal with

fragmented networks and the increase in traffic demand. Previo us work done by UCL about
NREP [4] use content names as the primary means for routing. However, unlike conventional

ICN that is primarily designed to support name-based routing in an infrastructure-based

30

environment, NREP is designed to operate in an infrastructureless environment and focuses on
name-based replication, rather than routing.

We argue for the need of a name-based forwarding/replication scheme, wherein intermediate

nodes use a name associated with each message to make decisions such as whether to replicate

and if so, according to what priority, or otherwise, store(-and-carry) and for how long storage
should be allocated. Moreover, we discuss the need to expose other parameters such as priority,

time-to-live and geographical constraints in the name or as attributes of the name.

This is done in order to help increase the efficiency of intermediate nodes to make decisions on

storage and replication. However, since NREP is aimed to be developed over the UMOBILE
platform and using WiFi Direct communications for Android devices, when we need to broadcast

a message within a certain area, it is necessary to first establish a WiFi Direct group and
broadcast the emergency message in this group, being this group formed by 2 peers or more.

This connection period takes some time and adds an important latency to the communications,
being up to 10 seconds in certain situations [5]. This latency cannot be omitted in mobile

scenarios where contacts are short in duration time, since during that time the number of
contacts around can change, losing contact with some of the users that were around. We need to

prioritise those contacts with users that will have more affinity to the recipient of the message
than others users.

To this end, we believe that we should take into account not only priorities between different

content, but also we should have to prioritise WiFi Direct group establishments between those
peers that are more suitable for their mobility history. This task considers NREP as basis as [4]

to include social encounters in the connectivity manager aimed at prioritise connections with
the best users to send emergency information.

Then, the task shall integrate other measures of affinity and develop NREP extensions for

priorities, derived from contextual data. Examples of such measure can be aspects such as
surrounding density (affinity network); priorities for the content (urgent, not so urgent);

contextual input from the device (e.g., low battery). Such measures are derived from the

sociability forecasting module (task 4.2, PerSense Mobile Light v2.0). PerSense Mobile Light v2.0
provides contextual data concerning roaming habits by using WiFi, data concerning social

interaction, by using the WiFi and Bluetooth interfaces, and about users’ behaviour, e.g., by using
data concerning device usage. Such “smart” captured data (in contrast to raw data) is then made

available to several UMOBILE modules, and in the case of the forwarding strategies, to the
connectivity manager module.

4.1.2.1. Priorities and Namespace

In the following table, we specify an example of different priorities with its related attributes

that can be defined in the NREP system and used to give prio rity to emergency services over
other services. We think we can use this set of name prefixes as an example of different

applications that can be used in the UMOBILE platform. As mentioned, these will be extended in
the context of 4.3.

31

Table 1: NREP priorities example

Name-prefix Priority Time-to-
live

Space Authorizaiton Recipient Notes

SOS High Short Closeby All
First-
responders

To use to ask
for help

Government High Indefinite All Officials All
To inform all
of food-
shelter, danger

First-
responders

High Indefinite Depends
First-
responders

All
To inform all
of rescue-
teams arrival

Warning Medium Indefinite All All
First-
responders

First-
responders
verify and
publish to all

Police High Depends Depends Police
Police
members

To chat among
themselves

Safe Medium Short All All
Public /
Family

To inform
others they are
safe

Chat Low Short All All Public
To chat among
each other

4.1.2.2. Modules to be modified

 Naming scheme: The naming scheme needs to represent the content prioritisation

depending on how critical is the application/service

 Content store: The caching policy should implement the prioritisation policies in order to
replace first the content that is not important in terms of critical level.

 Application/services: The application services should use the specific naming scheme in
order to take benefit of the proposed scheme.

 Forwarding engine: The forwarding engine should be modified in order to prioritise the
critical content exchange when contacts between users occur.

 Face manager: The face manager should be modified to take into account the contextual

information to manage and prioritise connection establishment with those users socially

closer to the recipient of the content or those users that will be able to better spread the
content.

32

 Contextual information: We will need to design interfaces between the contextual

information module (PerSense Mobile Light) and the NREP modules in order to be able to
use the contextual information to improve the priority information forwarding.

The NREP forwarding mechanism will be specified and developed within the Task 4.3 “Name-

Based Replication Priorities” of the WP4. Deliverable D4.3 that is going to be submitted in M24
will provide all the details of NREP.

4.1.2.3. Network Requirements

The NREP approach fulfils the following network requirements:

 UMOBILE systems MUST be able to ensure data reliability and availability (e.g. taking into

account data usefulness - time to live; manage duplicated pieces of information) among a
set of distributed surrogates.

NREP will forward data to opportunistic nodes improving the availability of the content.

 UMOBILE systems MUST prioritise data to be exchanged, for instance giving high priority

to emergency and civil protection information.

NREP will prioritise emergency data over other services less critical.

 UMOBILE systems MUST be able to deliver information within geographic regions and
time frames that are relevant to different types of data.

NREP will forward content taking into account some policies like time-to-live, geographic region,

priority or recipient.

 UMOBILE systems MUST be able to provide the services to the end users when there is
no Internet connectivity.

NREP will provide critical information to users taking advantage of opportunistic

communications even when there is no Internet connectivity.

33

 4.1.3. Opportunistic Off-path Content Discovery

Figure 15. Opportunistic off-path content discovery modules

Data communications in fragmented networks, as can be UMOBILE networks, should not only

relay on network-centric resilience schemes, as is traditionally the case, but should also take

advantage of network management techniques that focus on information centric resilience. Such
an information resilience scheme is useful in networks set after a disaster s cenario, where the

network infrastructure is only partially available (in either a temporal or spatial manner) and
the reachability of the content origin is not guaranteed.

One of the main technical challenges according to the IETF ICNRG working group [6-7],

regarding the usage of ICN in disaster scenarios, is to exploit network management techniques

in order to enable the usage of functional parts of the infrastructure, even when these are

disconnected from the rest of the network. As in [6], we also assume that parts of the network
infrastructure are functional after a disaster has taken place and it is desirable to be able to

continue using such components for communication as much as possible. Unfortunately, this is

34

especially difficult for today’s mobile and fixed networks which are dependent on a centralised
infrastructure, mandating connectivity to central entities for communication.

The desired functionality of an ICN set after a disruptive scenario is to allow the delivery of

messages between relatives and friends, enable the spreading of crucial information to citizens

and enable crucial content from legal authorities to reach all users in time. In such a deployment,
where the content origin is not always reachable, a user can take advantage of similar interests

issued by neighbouring users and their cached content in order to retrieve the requested data.

In this context, we build on the ICN paradigm and enhance the NDN architecture with extra

components in order to make it resilient to network disruptions [8]. In this NDN extension, we
introduce an extra Interest management routing table, which we call the “Satisfied Interest

Table” (SIT) and which points to the direction of already satisfied Interests. This way, upon
failure of links/nodes towards the content origin, the SIT table is redirecting Interests towards

caches and end users that have recently received the requested content. We believe that network
management for disruptive environments should take advantage of information-centricity,

instead of focusing only on protocol-specific path recovery routing.

Figure 16. NDN design with the new Satisfied Interest Table (SIT)

In Figure 16, we can observe the main components of this NDN extension. As a new component

of the NDN architecture, we have the aforementioned SIT table. SIT keeps track of the Data
packets that are heading towards users. In the event that Interest packets cannot reach the

content origin following the FIB entries, they can be forwarded based on the SIT entries towards

users that issued similar interests in the past. SIT entries like PIT entries also allow for a list of

outgoing faces, supporting multiple sources of data, which can be queried in parallel or
sequentially depending on the chosen forwarding mechanism. Unlike a PIT entry, a SIT entry is

triggered by a returning Data packet, and similarly to a PIT entry, SIT entries comprise a trail of

35

“bread crumbs” for a matching Interest packet that leads back to users with similar satisfied

interests. Here, in order to improve scalability in disruptive networks, we assume that the newly

introduced SIT entries are compiled in a file/object/content item basis instead of chunk/packet

IDs to speed up the opportunistic retrieval mechanism. A node removes a SIT entry associated

with a (directly attached) user in the event of a disconnection or when the entry expires (e.g.,
according to a time-to-live parameter).

We also introduce an Interest Destination flag (IDF) bit to the Interest packet in order to

distinguish whether the packet is heading towards the content origin (IDF is set to zero),
following a FIB entry, or is heading towards users with similar satisfied interests (IDF is set to

one). In the second case (IDF is set to one), the Interest packet follows matching entries in the

SIT of each passing-by router. We also introduce a Scoped-Flooding Counter (SFC) to further

enhance the information retrieval capabilities of the proposed resilience scheme in some special
cases that we describe in the next section. We assume here that the FIB entries of all the chunks

of an item will be removed simultaneously from a router upon the “disappearance” of the content

origin. This means that an Interest packet will have to visit only one network router (the one
that the user is attached to) until the IDF is set to one, upon the fragmentation of the network.

4.1.3.1 Modules to be modified

 Routing module: The routing module should be modified in order to provide routing
information not only for the shortest path, but also for the one-hop detour path to the
content.

 Forwarding strategy: The forwarding strategy should be modified in order to forward
content using the three modes of operation defined by INRPP.

 PIT: PIT tables should be modified in order to follow the “breadcrumbs” through the

detour path as well.

 FIB: FIB tables should provide information for the detour paths as well.

4.1.3.2 Network requirements

 UMOBILE systems MUST be able to provide the services to the end users when there is no
Internet connectivity.

Opportunistic Off-path Content Discovery is aimed at enabling the usage of functional parts of

the network, even when these are disconnected from the rest. This means that the local data in
the fragmented network is still available, even when there is no Internet connectivity.

36

 4.2. Northbound APIs

 4.2.1. Contextualisation (PerSense Mobile Light)

The introduction of new, cooperative technologies and in particular of low-cost wireless access,

allowed the regular citizen to profit from the Internet as a commodity. This implies that most of
the mobile devices (cellular, wireless) that have taken part on the Internet up until now as plain

end-user devices, today can also be seen as networking nodes, having a role on the network

operation. The movement that these devices have therefore impacts the underlying connectivity

model and as consequence, it also impacts the network operation. Hence, being able to

characterize such movement and also to estimate potential individual as well as aggregate
movement is a requirement from the perspective of networking science evolution.

This need goes beyond the integration of movement prediction and/or anticipation mechanisms

in the network operation e.g., in routing or mobility management. In fact, roaming behavior is

becoming more relevant, and today, due to an extensive effort derived from several initiatives

as well as from extensive and wide traces collections, it is globally accepted that there is a
relation between social behavior and the user's roaming behavior. It is the social behavior that

assists in defining future user movement, both from an individual perspective, and from a group

perspective.

Hence, being capable of estimating such behavior is therefore relevant to optimize the network

operation, be it from a mobility management perspective - e.g. handover optimization -; from a
resource management perspective - e.g. performing a more intelligent load-balancing based on

potential future moves of specific devices -; from a routing perspective - e.g. making routing
more stable by selecting a priori paths that have a chance to be more stable in the presence of
node movement; from a service migration perspective.

In the context of UMOBILE, PerSense Mobile Light is a service that has been developed to assist

in performing network contextualization. Currently, PerSense Mobile Light captures

information concerning a user's affinity network (contacts derived from WiFi Direct and
Bluetooth) as well as concerning roaming habits, over time and space (WiFi). In a future version,

PerSense Mobile Light shall collect data on user behavior, derived from additional sensors - the

sociability forecasting module.

The current development phase (Phase I) was released in May as PerSense Mobile Light v1.0.
This service allows data capture that assists in understanding preferences in terms of roaming

habits and visited wireless networks. This type of contextualization is relevant, assuming, for

instance, that a UMOBILE mobile device may present a roaming preferences model, where the

intent is to consider personal preferences in terms of visited wireless networks. Or, it may
contain a model that relates with the need to share data opportunistically based on frequency or

volume of wireless contacts. These models shall be part of Phase II of PerSense Mobile Light

(v2.0, December 2016), and shall assist a user definition, based on specific parameters. The

identified user context is then used, together with the collected sensing data, to infer patterns of
user behavior. This support is coined as “sociability forecasting” in the context of UMOBILE

37

(refer to D3.3) and shall integrate aspects such as user recommendations and estimation of
conditions for social interaction to occur derived, e.g., from shared interests; affinities; wishes.

Tutorial

PerSense Mobile Light v1.0 can currently be used in Android devices. For that purpose, the
researcher needs to join the Google Beta Community Pervasive Sensing Experimental Tools

Community 3. After this step, a URL will be available to download the tool. This first service

version has as main purpose to assist the academic community in gathering meaningful traces

and develop scientific studies, by reusing traces. The service captures wireless footprinting

aspects such as geo-location; Access Points crossed and used; visit type and duration. It also
captures affinity networks (devices around, via WiFi Direct). This data is dumped daily to a

server database (SQLite) provided by partner Senception. The traces are expected to be open via
the UMOBILE Lab as well as via Crawdad, after adequate treatment (e.g. MAC obfuscation). The

data is also stored on the device per day; per week, and for one month. During night, the data is
dumped to the UMOBILE server. The data can be easily exported to usual formats such as cvs, or

xls.

The database comprises several tables:

 Roaming tables:

o 16 tables, 1 for each day of the week; 1 for each week 1 to 5; 1 for the current
month.

o Table entry tupple for each AP: <Id, bssid, dayoftheweek, state,

ssid, attractiveness1, lastgatewayIP1, dateTime, lat,

long>

 Visits table

o Connected APs, entry tuple: <Id, ssid, bssid, timeon, timeout,

dayoftheweek, hour>

 Affinity Network tables

o 16 tables, 1 for each day of the week; 1 for each week 1 to 5; 1 for the month

o Table entry tupple for each device in the vicinity: <Id, bssid,

dayoftheweek, state, ssid, attractiveness*,

lastgatewayIP*, dateTime, lat, long>

1 - fields to be worked in version 2.0 only.

3 https://plus.google.com/communities/104874036636715946374

38

The data is stored per device (1 directory per device, and per day). The SQLite database is stored

as e.g. 19-04-2016-persenselight.db. This database can then be accessed with a command to edit

SQL databases, such as the sqlitebrowser CLI, and the different tables can then be easily exported
to a format such as cls or csv.

Architecturally, and as depicted in Fig. 17, PerSense Mobile Light gathers data from Network
Interfaces (such as WiFi Direct) and interfaces with Applications providing them with contextual

information. It also feeds the Routing module with relevant data.

Figure 17. The PerSense Mobile Light as part of the UMOBILE platform

 The low-level design of the Contextual Information Module is provided in Fig. 18.

39

Figure 18. Low-level design of the Contextual Information Module

 PerSense Light v1.0 contributes to the following UMOBILE requirements

 R1: assists in understanding social trust circles; how they organize (contextual aspects)

and  their duration  

 R4: keeps all data local; relies on network mining and not on personal raw data capture

 R10: helps in understanding the relation between location and social daily routines

(roaming patterns and geographical regions)  

 R18: performs seamless sensing of user context  

 R20: provides feedback about networking dynamics, based on realistic social routines

 (roaming patterns)  

 R23: allows authorized people to track the routine of registered devices  

 R24: does not need an always on Internet access  

 R26: allows users to manage their trust circles  

Sociability forecasting module in PerSense Light contributes to the following UMOBILE

requirements

 R15, R16: assists in inferring user interests by analysing local usage  

40

 R18: performs seamless sensing of user context  

 R24: does not need an always on Internet access  

 R27: assists in matching familiar strangers’ interests and assists in facilitating meetings

 

41

4.2.2. PUSH services

Primitive NDN supports only the pull-based communication model. However, as documented in

D3.3, the UMOBILE platform needs to support both push-based and pull-based communication

models to be able to serve as an implementation platform for the proposed user scenarios and
their specific requirements. To cover the gap, Task 3.1 has implemented the pull-based

communication model and integrated it to the UMOBILE platform. We discuss the
implementation in the following sections.

In the pull-based model, a consumer (or receiver) initiates the communication. The consumer

requests a piece of data that might be available from more than one producer (i.e., any node who
has the matched content in the cache, original content source). In contrast, in the push-based

model, a producer initiates the communication. The producer pushes a piece of data that might
be delivered to one or more consumer who are interested in or subscribed to retrieve the data.

A comparison between pull-based and push-based communication is illustrated in Figure 19.

Figure 19: Push-based vs Pull-based communication models

Since the primitive NDN does not support push-based communication, a producer cannot

directly send a Data message to the consumer. The reason is that NDN r elies on reverse path

forwarding where the forwarding Data message follows information in the PIT. However, PIT
information is registered only when an Interest message is flowed to the NDN node. In other

word, either the consumer or producer must send an Interest message along the path to add a

new PIT entry to every intermediate node before sending the Data message. As a result, a Data
message can be sent following the chain of the intermediate nodes.

In the implementation of the push-based communication model that we have done for the

UMOBILE platform, push-based communication is integrated to the platform and appears as a
central component of the architecture. The push-based communication services are meant to
help meet the following UMOBILE network requirements as documented in the D2.2.

 R-6: UMOBILE systems MUST have an application programming interface allowing users to
publish new data and subscribe/register their interests in data.

 R-8: UMOBILE systems MUST allow geo-location of users to be automatically added to

contents generated by emergency applications.

42

 R-9: UMOBILE systems MUST be able to make specific types of messages available to
different receivers.

 R-13: UMOBILE systems MUST provide users only with relevant information, i.e., matching
user interest.

 R-17: UMOBILE systems SHOULD be energy efficient, aiming to increase their availability and
reduce their operational cost.

Figure 20 illustrates our implementation of the push-based services. The functional blocks

required to implement the push-based services are shown. The assumption is that the owners
of the services/applications provide the communication descriptors to the Service Manager.

Consequently, the Service Manager chooses the appropriate communication model (e.g., push -
based or pull-based) and passes the specific description to the communication model (R-9).

Figure 20. The function blocks for push services

43

Pull-based communication model: The pull-based model is inherently supported by NDN.

With this model, clients can request the desired content by issuing Interests with a name prefix.

The content providers directly or any other NDN node that has the requested content in its cache

can respond by means of forwarding the requested content towards the Interface following

information in the PIT. This communication model satisfies the requirement R-13. Figure 21
illustrates the pull-based communication model in the NDN architecture using Interest/Data

exchange.

Figure 21. Pull-based communication model

The primitive NDN architecture does not support the push-based communication model. We

have implemented it on the basis of its default Interest/Data exchange. Note that we have

implemented several functions to enable the UMOBILE platform to support several variations of

the push-based communication model: push-Interest poling, push-Interest and push-publish
data dissemination.

Push-Interest polling: When the consumer does not know when the data of interest will be

generated and available, it can keep polling the producer by means of issuing periodic Interests.

When the requested data is available, the data producer can push it in a Data packet. This model
can be used in energy efficient mode where a producer can turn off for a short period of time to

save energy (support R-17). Once the producer in back to its ON state, it can receive the periodic

Interest message and reply back immediately with the matching Data message. Two potential

drawbacks of polling are that it can cause network traffic and that the freshness of the received
data depends on the polling frequency. However, in some scenarios such as emergency

situations where the consumer cannot be associated with any UMOBILE hot spot, this model can

be useful to retrieve emergency services or contents. The Interest/Data message exchang e of
push-Interest polling is illustrated in Figure 22.

44

Figure 22. Push-Interest polling communication model

Push-Interest notification: In this model, the content of interest is generated as a text format

i.e. as an instance message or a text notification sent by a server. This data can be directly

appended to the Interest name. This method is commonly referred as Interest notification. Upon

the reception of such an Interest, the receiver can optionally send an Ack Data to confirm Interest

reception. This model can support R-8 where the geo-location of the user can be attached to the

Interest message. The push-based communication based on the Interest notification model is
illustrated in Figure 23.

Figure 23. Push-Interest notification communication model

Push-Publish data dissemination: In this model, we follow the publish-subscribe model (R-6)

where data producers can publish their contents or services via Interest message to the

subscribed consumer which in turn trigger an Interest back from the consumer to fetch data.
Figure 24. illustrates the Interest/Data exchange of push-based communication with publish

data dissemination under the NDN architecture. The data producer initially sends the publish

message to its subscribed consumer. To distinguish the Interest message from other models, a

name component, “publish” is added after the content name. Consequently, the consumer

receives the publish Interest message, it discards the last component (“publish”) and sends the
new Interest message with the content name to request the data. In NDN, content is divided into

several chunks. Due to self-traffic regulation feature of NDN, N-1 subsequent requests are sent

45

to retrieve all chunks of the requested content. The last component in the name structure is

reserved for the incremental chunk ID which is automatically generated regarding previous
received data chunk.

In general, in the NDN architecture, the Data message is expected to be sent after receiving an

Interest message. However, in the push-publish data dissemination model, the consumer
responds to the first published Interest with a new Interest message. In this context, we use the

NDN API to control the arrival of Interest messages by filtering names with key word “publish”.

If the Interest’s name contains this keyword, the communication is processed through the
publish data dissemination scheme.

Figure 24. Push-Publish data dissemination communication model

Push services are applied in several modules of UMOBILE architecture.

 The monitoring module requires the push based model to fetch the monitoring data from the
UMOBILE hotspot.

 The UMOBILE hotspot uses the Push - Interest notification model to report the node usage

(e.g., memory usage, CPU load) to the monitoring module.

 The decision engine in service migration platform also requires the push - Publish data
dissemination to migrate the services to the selected UMOBILE hotspots.

46

 4.2.3. KEBAPP application sharing platform

Figure 25. KEBAPP modules

Within the UMOBILE project, we present KEBAPP [9], a new application-centric information

sharing framework oriented to support and provide opportunistic computing to mobile devices

(smartphones, tablets, etc.). Our approach targets scenarios where large numbers of mobile
devices are co-located presenting the opportunity for localised collective information exchange,
decoupled from Internet-access.

In KEBAPP, we propose the creation and use of 802.11 broadcast domains for the support of

particular applications i.e., KEBAPP-enabled hosts or APs advertise one or more Basic Service

Set(s) (BSSs) for the support of one or more application(s). The creation of application specific

BSSs aims at enabling mobile devices to connect only when their counterparts support the same

application and/or namespace. The advertising AP or host, through a WiFi Direct Group, acts as

a mediator to connect different users willing to share the same application in a single broadcast

47

domain. In the case of APs, functionalities such as access control, association, encryption, etc.,
can be supported without imposing computation and/or battery overheads to mobile devices.

In this context, KEBAPP employs application-centrism to facilitate/enable (i) the exchange of

processed information, in contrast to merely static content, and (ii) the discovery and delivery

of information partially matching user interests. Figure 25 presents the structure of a KEBAPP-
enabled host. KEBAPP provides a new layer between the application and the link layers

exhibiting three major design features. Namely, (i) application-centric naming, where

applications share common name spaces and further support the use of a keywords, (ii)
application-centric connectivity management, where applications manage connectivity by

defining and/or joining WiFi broadcast domains, and (iii) information-centric forwarding,
extending NDN architecture.

4.2.3.1. Operation

The basic forwarding operation of a KEBAPP node is a modified version of NDN architecture,

aimed at reflecting the forwarding of messages within the various Basic Service Sets (BSSs) a
node may participate. As explained in the following, since we consider single-hop broadcasting

domains, forwarding decisions lead to either the broadcasting of a message in the BSS or its

delivery to a local application instance. As such, broadcast domains are considered as
(inter)faces of a KEBAPP node.

The KEBAPP forwarding scheme, similarly to NDN, has three main data structures: FIB
(Forwarding Information Base), CS (Content Store) and PIT (Pending Interest Table). The FIB is

used to forward Interest packets toward potential sources of matching data. The CS is
responsible of caching the information requested by the users, providing fast fetching for

popular information and avoiding to recompute information already requested by other users.
The PIT keeps track of Interests forwarded to any BSS.

Figure 26. KEBAPP operations

Figure 26 above provides a representation of the KEBAPP packet forwarding engine. Below, we
detail the operation of KEBAPP framework for an information requester:

48

1. The application requesting for information creates a new Interest.

2. The application looks for the information in the local CS. If the information exists locally,

the data is sent to the application.

3. If the information is not found in the CS, the KEBAPP layer inserts an entry in the PIT

table. As in NDN, we use the term “Internal Face” to point to the local application involved

in the transaction (either as requester or as provider).

4. The KEBAPP (network) layer checks if there is a BSSID entry in the FIB matching the

name prefix of the PIT.

5. If an entry for the requested name prefix exists, the connectivity manager connects the

WiFi interface to the BSSID in the FIB and broadcasts the Interest message with a

corresponding time-out value.

6. Each time a new FIB entry is added because a new prefix name is discovered on a new

BSS (e.g., through WiFi NAN), the KEBAPP layer checks if a pending PIT entry for this

prefix exists. As mentioned above, this corresponds to PIT entries created for Interest

messages that could not be forwarded. In case an entry exists, the Interest is sent through

the recently added BSSID, and the entry is updated with the BSSID value.

7. When a response is received with the information requested, the KEBAPP layer looks for

the internal face that points to the application in the corresponding PIT entry and

forwards the response to it. The PIT entry is removed and the information requested is

cached in the CS.

Next, we describe the operation of the KEBAPP framework for an information pr ovider:

1. The user receives an Interest through the interface connected to a certain BSS related to

an application.

2. The KEBAPP layer checks the CS for a matching entry.

3. In case there is no entry in the CS matching the Interest, a PIT entry is first create d. This

entry allows the provider device to serve multiple, concurrently arriving, identical

requests with a single message i.e., applying multicast, as in original NDN. In this case, the

Requesting Face list of the entry includes the BSSID of the current BSS. Subsequently, the

FIB table is looked up and the “Internal Face” is used to forward the Interest message to

the corresponding application. For completeness, the “Internal Face” is also added to the

PIT entry as an output face.

4. The response from the application is cached in the CS and sent back to the broadcast

domain indicated by the BSSID value of the local PIT entry, which is subsequently

removed.

4.2.3.2. Manual

Tables

49

NDN Forwarding Daemon (NFD) is a network forwarder that implements NDN protocol. We plan

to extend NFD reusing most of its components and doing some modifications in order to provide

a KEBAPP framework implementation. The tables module provides main data structures for

NFD. In the following we describe the main tables used in NDN and the modifications required
by KEBAPP:

 CS: The CS is the cache of the data packets arriving. In this case, we do not need to modify

the CS NFD implementation. However, the name used to index the data, will include the

name hierarchical prefix name, but also the different hashtags used to define the data
included in the name.

 FIB: The FIB is used to forward Interest packets toward potential source(s) of matching

Data. It is almost identical to an IP FIB except it allows for a list of outgoing faces rather

than a single one. Here, the FIB structure is modified compared with the NDN FIB. The

KEBAPP FIB requires to faces: the BSSID of the WiFi network where the application is

available, and an internal face with a pointer to the local application that is willing to be

shared with other users.

 PIT: The PIT keeps track of Interests forwarded looking for application sharing. In this

case, we need to extend the PIT in the same way we extend the FIB, and we need to include

a second face, and input face that keeps track of the origin of the Interest (the local

application or the WiFI network) and the output face that keeps track of the Interest

destination.

 Other tables: Other tables, such as the Network Region Table, the Dead Nonce List or the

Interest Table for loop detection do not need to be modified since KEBAPP does not need

those tables for its operation. The Measurements Table can be used to store measurement

information regarding certain apps.

Managers

Connectivity management plays a vital role in KEBAPP. KEBAPP focus on WiFi-enabled (IEEE
802.11) connectivity, including WiFi Direct, which enables mobile devices to act as APs by

forming communication groups. The creation of an application-specific BSS requires the ability

of mobile devices to identify the mapping between the BSS and the corresponding application.

The recently announced WiFi Neighbour Awareness Networking (NAN) protocol can support
this requirement. It is noted that a device can be connected to more than one BSSs at the same

time, thus acquiring or providing information across several applications. .

 Face Manager (Faces): The Face Manager is responsible of creating and destroying faces.

The face manager uses the information provided by the WiFi/WiFi-Direct interfaces to

create or removing faces to the multiple WiFi networks or certain local applications

 FIB Manager (FIB table): The FIB Manager is responsible of updating the FIB table. FIB

manager uses the information provided by the face manager about the networks

50

available in the vicinity and adds new entries for the KEBAPP applications available in

each network.

4.2.3.3. Modules to be modified

 Naming scheme: The naming scheme should use the proposed keyword-based naming

scheme in order to improve scalability and provide flexibility to applications to retrieve

useful information.

 Content store: The content should take into account this keyword-based naming scheme

to index the data properly and forward this data when required.

 Application/services: Applications network interfaces should be modified in order to

share the data with other users and retrieve data not only from central servers.

 Forwarding engine: The NDN forwarding engine should be modified in order to provide

new strategies.

 Face manager: The Face manager should be used to create and destroy WifiDirect groups,

discover other peers that are sharing the same application, and populate FIB tables with

the information of the users in the vicinity.

 PIT: The PIT table should be modified in order to keep the information necessary not only

to forward the data to the network but also to identify the local app at the same time.

 FIB: The FIB table should be modified in the same way the PIT table should be.

4.2.3.4. Network requirements

 UMOBILE systems MUST be able to exchange data by exploiting every communication

opportunity through WiFi (structured, direct), 3G and bluetooth, among UMOBILE systems,

operating even in situations with intermittent Internet connectivity.

KEBAPP will provide application sharing capabilities in order to provide pr ocessed

information to users that have no Internet connectivity exploring other connections such

as WiFi Direct.

 UMOBILE systems MUST be able to exchange data taking into account user data interests

and context.

Since KEBAPP is application-centric, users that are not interested in the data because

don’t have the application or are not willing to share it, won’t participate in the

communications

 UMOBILE systems MUST be able to provide the services to the end users when there is

no Internet connectivity.

KEBAPP is aimed at providing services to those users that have no Internet connectivity.

51

 UMOBILE gateways are able to convert the ICN traffic to traditional IP packet format

and vice versa

KEBAPP can be used for gateways to provide to UMOBILE users, without Internet

connectivity, information from the Internet to the UMOBILE NDN domain.

4.2.3.5 Code

A first version of the NFD, including the modifications required to enable the KEBAPP sharing

framework, has been already developed. In the following, we add the link to the code

repositories with the modified version of NFD and the Routefinder sample application presented
during the Midterm review in October 2016 to the European Commission.

The KEBAPP NFD daemon code is provided in the following link:

https://github.com/srene/KEBAPP

The Routefinder sample KEBAPP application can be found in the following link:

https://github.com/srene/routefinder

4.2.4. Short Messaging Application

The Short messaging application Oi! was developed to operate above the SOCIO framework

(described in section 4.4.2). The Oi! application uses the SOCIO User Interface (UI) allowing the

user to compose a message, choose its recipient from a list of known contacts, and to see received
messages. Though the UI interacts Oi! interacts with SOCIO's Content Manager (CM) module,

which is responsible to manage all the messages to be sent, as well as received messages. The

primitives Send(destination, message), allows the application to pass to the CM the data

needed for this one to build a message to be sent to a given destination node; Receive(message),

allows the application to get from SOCIO’s CM a received message; and GetContactsList(),

allows to fetches a list of known contacts to display on the UI.

Fig 35 shows how Oi! works on top of the SOCIO framework, to allow users to opportunistically

exchange messages based on their level of social engagement. So, the first check (1) is whether

the SOCIO framework is available. If not, the application asks the user to proceed with SOCIO's
installation (2). Otherwise, Oi! connects to the framework (3).

Once connected to the SOCIO framework, Oi! requests the contact list (4) and shifts to idles state
(5), in which one of the following actions may take place (order is irrelevant and serves for the

purpose of explanation only):

Contact list is received: Oi! then updates the list of contacts on the user interface (6).

Messages are received: Oi! displays the incoming messages to user (7).

https://github.com/srene/KEBAPP
https://github.com/srene/routefinder

52

User composes a message: Oi! forwards the newly composed message to SOCIO framework (8).

Figure 27. Oi! application operation flowchart

For a full description of Oi! code documentation, refer to Annex 1. The open source code of Oi! is
available at GitHub: https://github.com/COPELABS-SITI/Oi

53

 4.3. QoS and Congestion Control

Figure 28. Service migration function blocks

As stipulated in Project Summary and Task 4.1, the UMOBILE architecture is expected to develop

the needed mechanisms to supports different requirements of QoS. We address the issue by

means of mechanisms implemented and deployed at the application level and network level that
operate independently but compensate each other.

Application level QoS mechanisms exploit parameters that easy to measure and manipulate
from the application level such as latency, inflicted load on servers, number of users interested

in a given service, number of replicas of a service, physical location of replicas within the
network, physical resources available in a service (memory, disk, CPU), and so on. On the other

hand, network level QoS mechanisms are based mainly on network traffic engineering and
exploit parameters that are easy to measure and manipulate at network level such as link

throughput and link outages. The discussion of this section is focused only on application level

54

QoS mechanisms. Note that application level QoS mechanisms rely on both, the optimisation of

the usage of available resources and the possibility of deploying additional ones such as more
virtual machines.

4.3.1 Service migration

In this section we discuss the design and implementation of a service migration framework that

we are in the process of implementing as a measure to address QoS requirements as expected
within the work to be carried out by Task 4.1. We also explain how the features provided by the

service migration framework help satisfy the system and network requirements stipulated in
the D2.2 Deliverable (System and Network Requirements Specifications).

4.3.1.1 System and network requirements

The motivation for the implementation of the service migration framework is to enable the

UMOBILE platform to satisfy some of the system and network requirements stipulated in the

D2.2 deliverable. The following requirements are those related to service migration. By service
migration we mean the service migration framework that we are in the process of implementing
to perform service migration and replication as explained in subsection 4.3.1.

 R-6 UMOBILE systems MUST be able to ensure data reliability and availability (e.g. taking
into account data usefulness - time to live; manage duplicated pieces of information)
among a set of distributed surrogates.

 R-8 UMOBILE systems MUST be able pre-fetch data in order to improve service
performance.

 R-10 UMOBILE systems MUST be able to deliver information within geographic regions
and time frames that are relevant to different types of data.

 R-11 UMOBILE systems MUST provide users only with relevant information, i.e.,
matching user interest.

 R-13 UMOBILE systems MUST be able to provide the services to the end users when there
is no Internet connectivity.

 R-16 UMOBILE system SHOULD be able to pre-fetch data based on user interests (e.g.,
parking places near recommended art gallery) and behaviour (e.g. mobility patterns), in
order to reduce delays in data delivery.

 R-19 UMOBILE systems SHOULD provide information about the network status (e.g.
network diameter, average path length, link bandwidth, network delay) is order to allow
authorities to take corrective measures
(e.g. deploy UAV infrastructure).

 R-20 UMOBILE systems SHOULD be able to create opportunistic communication
infrastructures, instantaneously deployed using UAVs.

 R-22 UMOBILE systems SHOULD be able to provide local services when the system
cannot connect to the Internet.

The relationship between the requirements listed above and service migration is explained in
the following lines:

55

 R-6: Data reliability and availability can be achieved by means of migrating services in
anticipation of potential network outages, that is, upon detection of threatening
problems.

 R-8, R-16: The service migration platform implements service pre-fetching mechanism
aimed at improving service performance.

 R-10: Service migration accounts for geographical locations in its service migration
strategies, for instance, a service is migrated to the geographical region where users have
expressed demand for the service.

 R-11: A service is migrated only when the service migration engine estimates that there
is enough user interests to justify the migration costs.

 R-13, R-22: Service are migrated as close as possible to the end user (normally to the
network edge) and as a measure to mitigate connection problems including slow
connectivity and or no connectivity at all.

 R-19: The service migration framework will include monitoring mechanisms for
collecting metrics (topology, latency, link bandwidth) that help determine the current
status of the network.

 R-20: This requirement is to some extend related to the service migration framework in
that, the latter is based on opportunistic service migration.

4.3.1.2 Service migration

A well-known technique, and the subject of discussion of this section, that we are exploring to

build application level QoS mechanisms is service migration and replication. The main idea is to
exploit the latest advances in monitoring and virtualisation technology. In particular, we take

advantage of monitoring and Docker virtualization technology to tackle the problem using
informative service deployment, static and live service re-deployment (migration) to move

services closer to the consumers. To place service migration within a deployment context let us
have a look at Figure 29.

56

Figure 29. A view of UMOBILE platform deployment with focus on service migration

 UMOBILE Platform: By UMOBILE platform we understand several pieces of software

that can be deployed in the components shown in the left side of Figure 29. Such pieces

of software include the core components of the NDN proposal and software developed by

the UMOBILE consortium. In other words, the UMOBILE platform is the software needed
for building, enacting and operating the UMOBILE Domain shown in the figure.

 UMOBILE Domain: We conceive the UMOBILE Domain as a set of nodes deployed with

UMOBILE software so that they are able to take advantage of the ICN-DTN facilities. All

the components shown in the UMOBILE domain require the UMOBILE platform software

to support applications such as the demonstration scenarios. However, the deployment

of UMOBILE platform software in end-user’s devices is optional since these devices can
use conventional IP interfaces to connect to the UMOBILE domain. The UMOBILE Domain
is linked to the conventional Internet by a UMOBILE Gateway.

 UMOBILE Gateway: The UMOBILE Gateway is responsible for converting NDN Interest
Requests to HTTP requests and HTTP responses to NDN Response.

 ISP provider: We assume that the UMOBILE Routers and UMOBILE Access

Points/Hotspots are deployed by an ISP and overlaid over an existing IP-infrastructure.
The assumption is that the original IP infrastructure is not reliable enough to satisfy

different QoS (no-effort, best-effort, guaranteed QoS, etc.) demanded by end-users.

Examples of end-users to be supported are the end-users involved in the emergency

scenarios that UMOBILE is planning to use to demonstrate the functionality and
performance of the UMOBILE platform. To simplify the problem, we assume the existence
of a single IPS shared by all the components.

 UMOBILE Router: A UMOBILE Router is an NDN router. We assume that UMOBILE

Routers are in possession of storage that they use for providing in-network storage for
in-network caching.

57

 UMOBILE Access Point (AP): A UMOBILE AP is a UMOBILE Access Point. It is a node

deployed with the UMOBILE platform and provided with storage, processing and wireless

communication facilities. A UMOBILE AP can be used to store services for the benefit of
end-users who can access them from mobile devices equipped with wireless

communication. Within UMOBILE, we use Raspberry Pi computers to realize the
UMOBILE APs. Note that not all UMOBILE APs are directly connected to UMOBILE

routers.

 Service/Content Provider: The Content Provider is repository of services that are likely

to be of interest to the end-users. Examples of such services are Oi, and Kebab. A service

in the Content Provider is stored as a compressed image (e.g., Dockerised images) that
can be retrieved by the Service Manager and deployed upon request. We assume that the

Content Provider delegates the ISP provider the responsibility of making the services
available to the end-users.

 Service Manager: The Service Manager is responsible for deciding what services to

migrate and replicate, when and where to deploy them. It includes a Decision Engine and
a Service Repository (it will be explained below).

 End-users: An end-user (represented by a mobile phone in the figure) is a person in

possession of a mobile device with wireless facilities and interested in accessing servic es
provided by the ISP provider. We assume that mobile devices communicate with the
UMOBILE APs over conventional HTTP.

 UAV: An Unmanned Aerial Vehicle is a drone provided with storage, processing and

communication facilities and capable of communicating with UMOBILE Hotspots. As

shown in the figure, in the UMOBILE platform UAVs are used for transporting content (for

example, plain data or compressed images of services). UAVs are used for enhancing the
UMOBILE platform with DTN features that are needed to satisfy QoS requirements such

as availability under no time constrains.

 End-user to End-user direct communication: As suggested by the figure, some End-
user’s mobile devices might choose to deploy software for communicating with each

other directly. An example of such software is KEBAPP that the mobile devices can

download from the UMOBILE APs.

To support service migration, we have implemented a service migration framework that consists

of the functional blocks shown in blue colour in Figure 28.

 Application/Services: The Application (also called Services) are compressed dockerised
images produced by content providers and delegated to the Service Manager for

deployment under the observance of QoS requirements. They are stored in the
Service/Content Provider shown in Figure 29.

 Service Manager: The Service Manager is responsible for deciding what services to

migrate and replicate, when and where to deploy them. It includes a Decision Engine and

58

a Service Repository. For example, it might decide to migrate a given service to one of the
five UMOBILE APs shown in Figure 29.

o Decision Engine: At the heart of the Service Manager is a Decision Engine that

makes decisions about service migration on the basis of the QoS required by each

service and monitored parameters that impact their QoS. The QoS requirements
are provided by the owner of the services as deployment descriptors with QoS

constraints. Similarly, the monitored metrics are provided by the Monitoring

component. This strategy is related to service placement algorithm (Task 4.1)
running inside the decision engine.

o Service Repository: The Service Repository is responsible for storing

compressed (dockerised) images of services subject to migration and replication.

o Service Execution: Images are migrated to hosts with storage and processing
facilities, such a Raspberry Pi. For example, Service Execution (not represented in

Figure 35) can be performed in the access point shown in Figure 36. We assume

that the recipient hosts are capable and willing to receive compressed images of

services from the Service Manager, uncompress, execute them and grant access to
end users.

 Monitoring: The monitoring component is responsible for collecting metrics about

parameters that impact the QoS and of interest to the Service Manager. It can be realised

as a set of monitors deployed to collect metrics about the status of the parameters of

interest. Typical examples of QoS parameters are the number of users requesting a given
service, load inflicted on existing replicas, performance of replicas, resources of the

computer executing the replicas (memory, CPU, disk), network traffic, latency, delays,

bandwidth, and so on. The monitoring components should be placed in location where

the metrics of interest are observable, for instance, in Figure 29, they will be placed within

or near the UMOBILE Hotspots. Information collected by monitors can be used to by the
Service Manager to infer and construct the current network topology.

 Communication Model: This component implements the communication models

discussed in the Push Service section, namely: pull-based, push-Interest poling, push-

Interest and push-publish data dissemination. Service Manager contacts the

Communication Model to make decisions about what communication model to use to
migrate a given service.

 Naming Scheme: This component implements a naming mechanisms capable of naming

proper name for each Interest/Data message. For instance, the Naming Scheme module
adds a “push” prefix for push-based communication.

 Routing Module: This component implements routing strategies. The Service Manager

contacts the Routing Module to choose the best routing strategy. For instance, when a less

than best effort service is required, the Routing Module chooses a DTN routing
alternative and activates a DTN face for this service .

59

4.3.1.2 Message flow

The service migration framework relies on monitored data provided by the Monito ring

component shown in Figure 30. We have implemented the monitoring component as a set of

monitors deployed within the UMOBILE APs shown in Figure 29. We will explain next the flow

of messages involved to collect the monitoring data. The message flow is operated as the
following steps:

1) The monitoring function component periodically collects monitoring data from the

UMOBILE APs by providing descriptions such as name of UMOBILE APs, collecting
parameter name of request service (service monitoring) to the

Naming/CommunicationModel/Forwarding APIs module.
2) The Naming/CommunicationModel/Forwarding APIs module implements a specific naming

scheme to generate the corresponding Interest message and chooses a communication

model. A pull-based model is used for this operation.
3) The Forwarding pipelines of a forwarding engine sends Interest message to the UMOBILE

network where it is delivered to a UMOBILE AP that has the same registered name as the

name in the Interest message

4) The UMOBILE AP responds to the Interest message by sending back a Data message with the
information. In this example, the monitoring module collects two metrics namely CPU load
and memory usage.

Figure 30. The message flow of monitoring system

60

 4.3.2. INRPP: In-Network Resource Pooling Protocol

Figure 31. INRPP modules

Within the UMOBILE project, users may need to access Internet services and/or services may

need to be pushed to the edge of the network. In this case, it is necessary to deal with congestion

to provide services and/or push services as fast as possible. Current end-to-end (e2e) congestion

control (e.g. TCP) deals with uncertainty using the “one-out one-in” principle. E2e approaches

effectively deals with uncertainty by (proactively) suppressing demand and end-points have to

speculate on the resources available along the e2e path.

First NDN/ICN congestion control proposals are based on hop-by-hop congestion control.

Despite are based on interest shaping, they still follow the “one-out one-in” principle as well and

they do not explore in-network caching capabilities to improve congestion control neither

multipath capabilities.

61

Figure 32.
Left: E2E flow control. Bandwidth is split according to the slowest link on the path.

Right: In-Network Resource Pooling. Bandwidth is split equally up to the bottleneck link (global fairness).
Detour applies to guarantee local stability.

Within the UMOBILE project, we aim to design and evaluate the In-Network Resource Pooling
Protocol (INRPP)[15], which pools bandwidth and in-network cache resources in a novel
congestion control framework to reach global fairness and local stability, taking profit of the
hop-by-hop design and the caching capabilities inherent in the NDN networks, or adding caches
(i.e., temporary storage) and breaking the end-to-end principle.

Given this functionality of in-network storage, INRPP comprises three different modes of

operation:

1. push: content is pushed as far in the path as possible in an open-loop, processor sharing

manner, based on the path's hop-by-hop bandwidth resources to take advantage of

under-utilised links.

2. store and detour: when pushed data reaches the bottleneck link, the excess data is cached

and simultaneously forwarded through detour paths towards the destination.

3. backpressure: if detour paths do not exist or have insufficient bandwidth, the system

enters a backpressure mode of operation to avoid overflo wing of the cache. During the

backpressure mode, the nodes enter a closed-loop mode, where an upstream node sends

one data packet per one received ACK to the backpressuring downstream node.

The INRPP congestion control is out of the scope of WP3 and it is being developed within the
Task 4.1 “Providing different levels of QoS and flow controlr of the WP4.

4.3.2.1. Modules to be modified

 Routing module: The routing module should be modified in order to provide routing

information not only for the shortest path, but also for the one-hop detour path to the

content.

 Forwarding strategy: The NDN forwarding strategy should be modified in order to

forward content using the three modes of operation defined by INRPP.

 PIT: PIT tables should be modified in order to follow the “breadcrumbs” through the

detour path as well.

 FIB: FIB tables should provide information for the detour paths as well.

62

4.3.2.2. Network requirements

The INRPP proposal does not fulfil any specific network requirement of D2.2. However, it helps

sending information in an efficient way, improving the QoS perceived by the users, an inherent
requirement in the UMOBILE project.

63

4.4. Routing module

This section provides a description of the routing module being developed for the UMOBILE

mobile node, in order to allow the exploitation of any wireless communication opportunity (e.g.

over WiFi direct links, WiFi infrastructure or over a DTN link). Since the NDN framework was

selected as the de-fact reference of an information centric networking architecture in the

UMOBILE project, the UMOBILE routing engine is embedded in an enhanced version of the NDN
framework for Android devices.

In this section we start by describing, in section 4.4.1, the NDN framework for Opportunistic

Networks (NDN-Opp), which is being developed aiming to support opportunistic forwarding

based on users’ interests and their dynamic social behaviour. The NDN-Opp framework includes

some changes in relation to NDN in order to enable social-based information-centric routing
over dynamic wireless networks. In order to evaluate the feasibility of using social-aware

routing metrics in some of the UMOBILE use-cases we started by implementing an opportunistic

routing framework, called SOCIO, based the Time-Evolving Contact Duration algorithm [10] used

by the dLife protocol [3,11]. To evaluate the operation of SOCIO, a short messaging application
was developed [1], since this type of application is used in several UMOBILE use -cases. The
SOCIO framework is described in section 4.4.2 (the oi! application is described in section 4.2.4)

Section 4.4.3 provides initial highlights to the work being done to develop a smart routing

approach aiming to handle the heterogeneous set of connectivity that an UMOBILE mobile node

may face, such as WiFi direct for communication with peer nodes, DTN links for delay tolerant
communications, and WiFi links for communication with the Internet (based on an NDN edge

router).

4.4.1. NDN-Opp: NDN framework for Opportunistic Networks

The NDN-Opp framework is being developed to fulfil the following UMOBILE requirements, as

listed in deliverable D2.2:

 R-2: UMOBILE systems MUST be able to exchange data by exploiting every communication
opportunity through WiFi (structured, direct), 3G and bluetooth, among UMOBILE systems,

operating even in situations with intermittent Internet connectivity.  

 R-3: UMOBILE systems MUST be able to exchange data taking into account user data interests

and context.  

 R-5: UMOBILE systems MUST have an interface to support the following T3.2 applications:

Chat; File exchange/synchronization; Content request/publish.  

 R-7: UMOBILE systems MUST be able to make messages available to different receivers

simultaneously.  

 R-11: UMOBILE systems MUST provide users only with relevant information, T3.3 i.e.,

matching user interest.  

 R-15: UMOBILE system SHOULD be able to provide users only with information that matches

their interests (e.g. art exhibitions).  

64

 R-17: UMOBILE mobile systems SHOULD be able to sense user context (geo - T4.2 location,

relative location, proximity, social interaction, activity/movement, roaming, talking) in a

non-intrusive manner.  

The current specification of NDN-Opp aims to handle the dynamics of opportunistic wireless

networks by forwarding interest packets towards best neighbours, which are selected based on

their probability to deliver packets to a node carrying the interested data. This means that the

current specification of NDN-Opp makes use of:

 The existing best route forwarding strategy to deliver interest packets. In this case the

cost is related to the social weight computed by the social proximity module.

 The NDN “breadcrumb” approach to deliver data packets based on the information stored

on the PIT.

The cost of each name prefix (stored in the FIB) is the value of the social weight compute for the

best next hop, as computed by the social proximity module.

NDN-Opp provides support to the NDN natural pull communication model (e.g. data sharing

applications) and to the push communication model used by interactive applications, such as the

short message application, Oi!, developed with SOCIO [1]:

 Support to pull model: NDN-Opp allows a receiver to express its interest in receiving

some type of data, by sending Interest packets to name prefixes such as

/app/Now@/Topic used by the Now@ application (data sharing application being

developed to demonstrate NDN-Opp support to pull communication models).

 Support to push model: NDN-Opp allows a node to express its interest in receiving data

from a specific application (name prefix). For instance, if a node Nx would like to start

using the short messaging application, Oi!, it send an Interest packet with name prefix

/app/oi!/Nx/ or of type /app/oi!/Nx/Ny if node Nx would like to receive Oi! short

messages only from node Ny. To support the pull model, NDN-Opp included the

concept of Long Lived Interests, allowing one Interest to serve more then one data

packet.

In order to handle the intermittent nature of the wireless links, the NDN-Opp includes the

concept of virtual faces, which send and receive packet via a WiFi direct link. Each virtual face

can be in two states (ON and OFF), and is named after the identified of the neighbour node. Since
packets may not be handle to be dispatched after a SendInterest or SendData issued by the

forwarder, each virtual face implements two queues:

 An Interest Queue (IQ), which stores Interest packets to be sent.

 A Data Queue (DQ), which stores pointers to the Data block (hold in the Content Store) to

be send.

The NDN face management creates virtual faces after the first contact with a new neighbour
node.

65

In summary, NDN-Opp encompasses the following novel contributions to the NDN framework

in order to allow its operation over opportunistic networks:

 Novel social-aware routing engine, which is able to implement different algorithms able

to select best routes based on the social weights computed from a social proximity

module.

 Novel forwarder able to support opportunistic communications.

 Integrates the concept of Long Lived Interest in order to support push communication

model.

o Users manifest their interest in getting data from some type of application (e.g.

short messaging) or from some specific node.

o Interests persist in the network for as long as established by the Interest source

by setting a Long Lived Interest parameter.

o While Interests persist in the network, data can flow towards the established

intermittent path.

 Integrates the concept of virtual intermittent face, which can be in two states (ON/OFF).

o Virtual interfaces include queues of interests and data, aiming to speed up

transmission over short-lived wireless links.

 Makes use of:

o Best route forwarding strategy to handle Interest packets based on social weights;

o The default “breadcrumb” approach to forward data..

 Two new fields in the PIT and FIB:

o Social Weights in the FIB

o Long Lived Interest (TTL) in the PIT.

 Novel NDN face: WiFi direct.

 Updated Bluetooth face (we need to gather info from neighbour, and not to send/recv

data).

The operation of an NDN-Opp node, as illustrated in Fig. 32, goes over a main set of operations

when it gets in contact with another mobile NDN-Opp node (e.g. when a virtual face goes UP).
As shown Fig. 32 the operation of an NDN-Opp node is similar to the basic NDN operation: the

node state is changed by the arrival of an Interest or a Data packet.

The major constraint of the NDN operation over opportunistic networks is the intermittent

nature of wireless connectivity. In order to accommodate this property of wireless links, virtual

faces are used. In this case, each mobile node has a virtual face towards to each encountered

66

node (e.g. Face A and C in the case of Node B in Fig 32). Each virtual interface implements an

Interest Queue (IQ) and a Data Queue (DQ), as depicted in Fig 33.

This means that in NDN-Opp the existing of virtual faces creates an indirection: The normal
operation of NDN finishes with a packet being send through a face; with NDN-Opp the packet

handling operations end with the packet being stored in the respective queue of the selected
virtual interface. Packets are transmitted by serving the interest and data queues of the virtual

face that got active.

Figure 32. Illustration of NDN-Opp operation

The forwarder is able to send and receive packet from several virtual faces, as well as the

application face. Upon the reception of an Interest packet, the normal NDN state machine is used,

but the PIT will store also the information related to the duration of the Interest (LLI). To
forward Interest packets, the best route forwarding strategy is used, in which the FIB stores the

cost associated to each name prefix (the cost is computed by the routing engine). When a data

packet arrives, the normal operation occurs, being the output virtual face selected based on the

information stored in the PIT.

The social-aware routing engine is responsible to select the best neighbour to reach data

related to a certain name prefix. For this propose the routing engine can run any type of social -

aware opportunistic routing algorithm [2,12]. The first algorithm used by NDN-Opp is the Time-

Evolving Contact Duration approach (TECD) [10] used by the dLife and SCORP protocols [3,11].

67

Computing routing information in opportunistic network based on social interactions has great

potential as less volatile proximity graphs are created [13]. We believe that the accuracy level of

social interactions is mainly dependent on the statistical duration of contacts over different

periods of time, since people have daily habits that lead to a periodic repetition of behaviour,

and will more accurately reflects the real evolution of social ties than relying solely on the
contact between nodes or well-defined social structures.

The TECD algorithm aims to compute the Social Weight (SW) of a node towards a name prefix
(which can represent another node, such as used by short messaging applications). By

computing SWs, the TECD algorithm is able of capturing the evolution of social interactions in
the same daily period of time over consecutive days, by computing social strength based on the

average duration of contacts. The TECD algorithm can also be used to capture the Importance of

any node (TECDi) in a daily sample, based on its social strength towards each user that belongs
to its neighbour set in that time interval, in addition to the importance of such neighbours. The

TECDi is based on the PeopleRank function [14]. However, TECDi considers the social strength

between a user and its neighbours encountered within a daily sample, while PeopleRank

computes the importance considering all neighbours of that node at any time.

The social-aware routing engine is responsible for the computation of social weights based on

information collected about neighbour devices. For that the routing engine makes use of an

interface towards the Contextual Manager developed by the UMOBILE architecture.

Figure 33. NDN-Opp design

68

The Contextual Manager shall be able to provide information about neighbour devices, to

ensure the proper operation of the routing engine. The basic operation of the NDN -Opp routing

engine requires information about the average contact duration between pair of nodes in

specific daily samples, as illustrated in Fig. 34.

Figure 34. Contacts a node A has with a set of nodes x in different daily samples

The operation of the social-aware routing engine is based on a social weight measurer, a social

weight repository and a gatherer of information about social weight and data carried by

neighbour nodes:

 Social Weight Measurer (SWM) – responsible for keeping track of the contact duration

information provided by the Contextual Manager. SWM maps this duration to the name

prefixes carried by the encountered nodes. Based on that, this component computes the

level of social interaction of the current node towards the name prefixes carried by

encountered peers. This social weight determines how good the encountered node is to

reach nodes that carry data related to such name prefixes. The social weight computation

takes place at every hour as to allow for a better view of the dynamic social behaviour of

users.

 Social Weight Repository (SWR) – responsible for storing the list of name prefixes that

the current node comes across (obtained upon encountering a peer). SWR holds the name

prefix, time it has been first encountered, and the cumulative duration of within a specific

hour. In the case, the current node still 'sees' such name prefix (i.e., respective peer node

is still in the vicinity), the time of first encounter is updated and contact duration is

accounted by SWM for the new hour.

 Social Weight and Carried Data Gatherer (SWCDG) – responsible for obtaining the list

of name prefixes and social weight towards them of encountered node. This element is

also responsible for obtaining information concerning the content carried by

encountered nodes.

The computation of social weights is triggered when a specific face notifies the SWM of the
presence of a neighbour node. The SMW creates entries for this encountered node in the SWR

considering the name prefix information obtained by the SWDCG. The SWM keeps track of the

69

contact duration between current and encountered nodes by querying the Contextual Manager

and updates the SWR accordingly. Since nodes (i.e., their users) present different patterns of

behaviour in different time periods, the computation of social weights takes place in an hourly

fashion. Information obtained by the SWCDG from the encountered node is used to populate PIT

and the content store.

Future work in the development of the NDN-Opp framework will be done based on exploiting

different contextual information provided by the Contextual Manager for the development of
novel routing approaches. The major action points are:

 Interface with the Contextual Manager: The collection of context information about

neighbour nodes, done currently by scanning the Bluetooth face, should be done also by

scanning the WiFi direct face. The goal is to allow the collection of neighbour information

to be done over the same wireless range as the one used to exchange data. Subsequent

evaluation about the performance of both approaches will be done based on a UMOBILE

testbed.

 Novel opportunistic routing mechanism. Currently NDN-Opp makes use of the social-

aware algorithm used by existing routing approaches (dLife/SCORP) [3,11]. We will

investigate an alternative proposal for the NDN-Opp framework based on novel

strategies to forwarding interest packets in dynamic networks. In a first stage we will

keep using the NDN default “breadcrumb” strategy to forward data. In a second stage we

will investigate a more intelligent method also to forward data, aiming to exploit any

contact with a neighbour node able of forwarding data towards the receiver(s), and not

just the wireless contact with the node that previously sent the Interest packet (which in

the approach followed in the default NDN “breadcrumb” approach). The performance of

both alternatives will be assessed in real scenarios.

4.4.2. SOCIO: Social-aware opportunistic networking framework

The SOCIO framework follows a modular design, aiming to allow easier extensions, such as the

inclusion of other routing schemes, a novel algorithm to infer social proximity, or a new method
to manage data.

As illustrated in Fig. 35, the SOCIO framework comprises an application interface (used by Oi!).

Thought this interface, SOCIO gets application data, which is stored in the Content Manager (CM)

module, which is responsible to manage all the data to be sent, as well as received. The primitives

Send(destination, message), allows CM to build a message to be sent to a given

destination node; Receive(message), allows CM to pass the received data to the application

interface; and GetContactsList(), fetches a list of known contacts to display on the UI. It is

worth mentioning that a new application (e.g., dissemination app) will make use of these

primitives provided by SOCIO's CM.

70

Based on collected data, CM starts by composing a new message, which is stored together with

the <sender, destination, timestamp> tuple. The sender and destination fields are the

deviceID of the message's source and recipient devices, respectively. The timestamp is used to
detect possible message duplication. This file is then stored in the Internal Storage (IS). All

messages to be sent are stored in toOthers.xml file. Upon getting a new message from the WiFi

Direct through the primitive Receive(received message list), CM considers the tuple

<sender, destination, timestamp> to filter messages. The filtering process is needed

to check: i) whether the same message has been previously received; ii) if the message

destination is the device itself, in which case checks if UI is available. If so, CM passes the received
message to be shown in UI. Otherwise, CM saves the message to the localCache.xml file so it can
be delivered when UI is available.

Figure 35. SOCIO high-level design

Routing (RT) module implements dLife, a social-aware opportunistic algorithm based on daily

routines [3,11]. Forwarding decisions are based on the level of social interaction among users:

message replication only takes place when the social weight of an encountered node towards a

specific destination is higher than the social weight of the current carrier of the message towards

such destination. When a device is found, through the primitive DeviceFound(deviceID,

SW list) triggered by the WiFi Direct module, RT gets the identification and list of social

weights of the device and by using the primitives GetListOfMessages(list of

destinations) and GetSWList(list of destinations), RT gets a list of carried
messages and the social weights towards a specific list of destinations, respectively, to help with

forwarding decisions. When the forwarding decision is made, RT uses Send(destination,

message list) to provide the WiFi direct module with a list of messages to be replicated to
the destination (i.e., encountered Oi! device).

WiFi direct module comprises the notification and data exchange phases. In the notification

phase, this module detects the presence of other SOCIO devices and notifies RT. As for the data

71

exchange phase, this module i) considers the list of messages from RT to replica te to an
encountered device; and ii) provides CM with a set of messages received from another device.

Social Proximity (SP) module computes the social weight towards encountered devices

through Bluetooth sightings and stores this information on its database. This social weight is

given by the Time-Evolving Contact Duration (TECD) [10], which via the primitive

onDeviceFound(deviceID, encounter time) compares the encounter time against the

current time after a Bluetooth scan to determine the contact duration towards a specific device

(i.e., deviceID). Social weight is computed in a hourly base, which can include different contacts
of various durations. SP provides the UI with a list of known contacts through CM, and RT with

a list containing the potential destination devices and the social weight towards them.

Bluetooth (BT) module is used to detect the presence of neighbouring devices. BT provides SP
with the identification of the neighbour device and the time of encounter.

A full description of SOCIO code documentation is provided in Annex 1. The open source

code SOCIO is available at GitHub SOCIO: https://github.com/COPELABS-SITI/SOCIO

The next subsection provides a description of the operation of SOCIO major components: the
Content Manager; Routing Module; Social Proximity Module; WiFi Direct Interface; Bluetooth
Interface.

4.4.2.1 Content Manager

The Content Manager (CM) is the module that provides the primitives that allow SOCIO to

exchange data with a set of applications. As shown in Fig. 36 this module starts by initializing the

TTL verification mechanism (1), which allows the removal of stale data, and the Routing module
(2).

72

Figure 36. Content Manager operation

CM then reaches the idle state (3), in which three possible actions may take place: Application

request contact list: CM provides the contact list obtained from the routing module (4).

Application produces an outgoing message: CM creates the packet with message in the payload

(5), writes this packet to the outgoing folder - toSend (6), and notifies the routing module on

the existence of a new packet to be disseminated (7).

New packer arrived: CM checks whether the current node is the recipient for this new packet

(8). If so, it checks whether the packet has been received before (9). If this packet has been

received (already in LocalCache), CM ignores it (10). Otherwise, CM extracts the message from

the packet, and sends it to the application (11). In the case the packet is too a different

destination, CM checks whether the packet has been received before (already in ToSend, 12). If

so, CM ignores the packet (13). Otherwise, it saves the packet in the ToSend folder for further
dissemination (14).

4.4.2.2 Routing Module

The routing module (RT) is responsible to deciding whether a packet is forwarded to an

encountered device. This decision is made based on the levels of social interactions between the
communicating parties and the packet's destination. The exchange of meta-data and packets
take place over WiFi.

73

Figure 37. Routing operation

As illustrated in Fig. 37, RT starts by initializing the Social Proximity (1) and WiFi Direct (2)

modules, shifting to an idle state (3). While in idle state, RT expects one of the four actions to
occur:

CM requests contact list: RT provides the contact list obtained from the social proximity module

(4).

Social weight list notification received from Social Proximity module: RT announces the received
SW list to neighbouring peers as this information is used to perform routing decisions (5).

Packets received from WiFi Direct module: RT sends these packets to CM, which decides if they
are new or have already been received (6).

New device found notification received from WiFi Direct module: RT builds a map (with devices

and packets towards them), which includes the found peer, and users that the found pee r has

listed on its social weight list and that the current node also has on its ToSend folder (7). RT

then checks whether the map is empty (8). If not, RT gets the first map entry (9) and check

whether the <device> matches the device found (i.e., final destination, 10). If so, RT removes

<device> from map (11), and adds the respective packets to the PacketToSend list (12). In the

case that <device> does not match the device found, RT checks whether the device found has

74

higher social weight than the current node towards <device> (i.e., destination, 13). If so, RT

removes <device> from map (14), and adds the respective packets to the PacketToSend list

(12). Otherwise, RT only removes <device> from map (15). This process continues until the map

is empty. Then, RT checks whether the PacketToSend list is empty (16). If not, RT sends this

list to WiFi Direct module for transmission (17).

4.4.2.3 Social Proximity

The Social Proximity module (SP) is responsible for computing the social weights towards other

devices. For that, it relies on Bluetooth scans to detect neighbouring devices and keep track of
the contact duration between users.

Figure 38. Social Proximity operation

As illustrated in Fig. 38, SP starts by initializing the Bluetooth module (1) and sending it a

command to start periodic scans detecting neighbouring peers (2). After that, SP starts the

periodic alarm for social weight computation (3), and shifts to idle state (4). Social Proximity
operation flowchart. While in idle state, SP may receive one of the four actions:

RT requests contact list: SP returns a list of contacts based on the information of devices added
to its Database (5).

RT requests SW list: this request may come with a set of specific devices (for forwarding

decisions), or it may require a complete list (for announcing the current node's social
information). Either way, SP responds by returning a list updated social weights (6).

Device found notification received from Bluetooth module: SP checks whether the found device

is already in the Database (7). If so, SP updates encounter duration information for this device

(8). Otherwise, the device has not been seen before, and SP then creates entries (9) in the
Database with its information (MAC address, name, encounter time).

75

Periodic social weight alarm goes off: SP updates encounter and social weight information to all
devices it has on the Database (10), and notifies RT about this update (11).

4.4.2.4 WiFi Direct Interface

WiFi Direct is responsible for transmitting and receiving packets to/from others devices by
using the WiFi P2P technology.

Figure 39. WiFi Direct operation

As illustrated in Fig. 39, WiFi Direct starts by initializing a WiFi P2P channel that will be used by

this module to announce local services, receive neighbour services and also to establish WiFi

P2P connections (1). After this initialization process finishes, WiFi Direct shifts to an idle state
(2).

WiFi Direct operation flowchart.

While in idle state, WiFi Direct expects one of the four actions to occur:

Start command received from the RT: RT provides the contact list obtained from the social

proximity module to be announced as local service (3). This start command also initializes the

discover process from Bonjour Service (4). This process will detect neighbouring devices that
have services being announced.

76

New device found: After WiFi Direct detects a new device nearby, it reads the TXT record

received (5) and checks if there is a SOCIO service available (6). If so, WiFi direct notifies RT

about this new device by sending the peer info and the SW list available inside the received TXT
record. (7).

List of packets received from RT: WiFi Direct checks if remote destination is still available (8). If
so, WiFi Direct verifies if it already has packets inside the queue to send to the remote device (9)

and it replaces the old packets with these new ones (10). If so, it just adds these packets to the

queue (11). Otherwise, WiFi Direct ignores these packets since it cannot reach the remote device.
By having new content to send, WiFi Direct checks if the timer is currently running (12), starting

it if that is not the case (13). The purpose of this timer, further detailed next, is to avoid WiFi

collisions (e.g., two devices trying to connect to each other at the same time) by adding a small

random delay to each connection. If timer is already running, it means that there is a pending
connection and these packets will be transmitted when this pending transmission finishes.

A WiFi P2P connection received: WiFi Direct module creates a server socket and waits for a client

(14). When the client connects to this server socket, the WiFi Direct module receives the packets
from the remote device (15). After receiving all packets, WiFi Direct searches the queue for

packets to this remote device (16). If there are packets to be sent, then WiFi uses the server

socket to transmit these packets to the remote device (17). Otherwise, WiFi Direct closes the

server socket and disconnects the WiFi P2P connection (18), and sends the received packets to
the RT module (19).

The timer mentioned when WiFi Direct has packets to be sent, is illustrated in Fig. 40. WiFi Direct

operation flowchart (thread). When the timer finishes (1), a WiFi P2P connection is created to

the remote device (2). When the WiFi P2P connection is established, WiFi Direct creates a client

socket (4) and starts transmitting the packets (5). After transmitting all packets, WiFi Direct

checks if the remote device has packets to send. If so, it receives the packets (6) and send them
to RT (7). Independently whether the remote device has packet to send, after this process the

WiFi Direct checks if the queue is empty (8). If there are still packets to be sent to other remote
devices, the WiFi Direct starts again the timer with a small random delay (9). Otherwise, the
thread is closed.

77

Figure 40. WiFi Direct operation flowchart (thread)

4.4.2.5 Bluetooth Interface

BT is responsible for detecting the presence of neighbouring devices for the purposes of social
weight computation carried out by the Social Proximity module. As illustrated in Fig. 41, BT

starts by initializing the Bluetooth communication interface (1) and registering the framework

UUID (2). This UUID is used to identify among the neighbouring devices which are actually

running the framework.

78

Figure 141. Bluetooth operation

Then, BT shifts to the idle state (3), where it expects for one of the four actions to take place:

Periodic scan command received from social proximity module: BT starts scanning for devices,

and sets a scan to be performed at every 3 minutes (4). Bluetooth device found: BT adds the

found device to the deviceList (5).

Bluetooth scan finished: BT checks whether the deviceList is empty (6). If so, it goes to idles

state (7). Otherwise, BT fetches the service UUIDs for every device in deviceList (8).

UUIDs received: BT checks whether the SOCIO UUID is among the received ones (9). If so, that
means that the device is running SOCIO, and BT notifies the Social Proximity about such device
(10). Otherwise, BT shifts back to the idle state (11).

79

5. Conclusion

This document covers the progress of the project so far towards the development of the unified

UMOBILE architecture. In particular, we first present the overall vision of the architecture and
then describe in detail the different components that have been developed, their status and the

next steps for their integration. For all components that have been deployed, we also attach the
relevant code, as well as their manuals.

This is the initial version of the UMOBILE implementation. At this stage, our version includes at-

least initial implementation of all critical UMOBILE modules, and in particular, the integration of
NDN and IBR-DTN, the migration of a simple web server, the Oi! app and the SOCIO framework,

as well as the PerSense Mobile Light service. The implementation so far demonstrates that:

 ICN/DTN integration is feasible indeed. More specific functions and services for a wider
range of UMOBILE scenarios will be integrated shortly;

 Service migration is feasible;

 UMOBILE representative applications that incorporate different interfaces, including
WiFi direct, have been developed;

 Α socially-aware opportunistic communication framework has been implemented and
can be exploited;

 A service that assists in performing network contextualization has been developed, and

 Push services can be successfully integrated into NDN.

All individual modules are the building blocks that lead us towards reaching our final goal of a

unified information-centric, delay-tolerant networking platform offering extended services to its

users. Further optimizations will be performed during the integration, optimization and

evaluation period. The final integrated version will be submitted to the European Commission
as D3.2 on M30.

80

References

[1] Waldir Moreira, Manuel de Souza, Paulo Mendes, Susana Sargento, "Study on the Effect of

Network Dynamics on Opportunistic Routing", in Proc. of AdhocNow, Belgrade, Serbia, July
2012

[2] Waldir Moreira, Paulo Mendes, Susana Sargento, "Social-aware Opportunistic Routing

Protocol based on User's Interactions and Interests", in Proc. of AdhocNets, Barcelona, Spain,
October 2013.

[3] Waldir Moreira, Paulo Mendes, Susana Sargento, "Opportunistic Routing based on daily

routines", in Proc. of IEEE WoWMoM workshop on autonomic and opportunistic
communications, San Francisco, USA, June, 2012.

[4] Ioannis Psaras, Lorenzo Saino, Mayutan Arumaithurai, KK Ramakrishnan, and George Pavlou.

Name-based replication priorities in disaster cases. In Computer Communications Workshops
(INFOCOM WKSHPS), 2014 IEEE Conference on, pages 434{439. IEEE, 2014.

[5] George Xylomenos, Christopher N. Ververidis, Vasilios A. Siris, Nikos Fotiou, Christos

Tsilopoulos, Xenofon Vasilakos, Konstantinos V. Katsaros, and George C. Polyzos, A Survey of

Information-Centric Networking Research. Communications Surveys Tutorials, IEEE, 16(2):,
Second 2014.

[6] J Seedorf, M. Arumaithurai, K. K. Ramakrishnan, and N. Blefari Melazzi, “Using icn in disaster
scenarios,” IRTF, 2015. [Online]. Available: https://datatracker.ietf.org/doc/draft-seedorficn-

disaster/

[7] D. Kutscher, S. Eum, K. Pentikousis, I. Psaras, D. Corujo, D. Saucez, T. Schmidt, and M.
Waehlisch, “Icn research challenges,” IRTF, 2014, August 2014.

[8] O. Ascigil, V. Sourlas, I. Psaras and G. Pavlou, "Opportunistic off-path content discovery in

information-centric networks," 2016 IEEE International Symposium on Local and Metropolitan
Area Networks (LANMAN), Rome, 2016, pp. 1-7. doi: 10.1109/LANMAN.2016.7548860

[9] I. Psaras, S. Reñé, K. V. Katsaros, V. Sourlas, G. Pavlou, N. Bezirgiannidis, S. Diamantopoulos, I.

Komnios, and V. Tsaoussidis. 2016. Keyword-based mobile application sharing. In Proceedings

of the Workshop on Mobility in the Evolving Internet Architecture (MobiArch '16). ACM, New York,
NY, USA, 1-6. DOI: http://dx.doi.org/10.1145/2980137.2980141

[10] Waldir Moreira, Manuel de Souza, Paulo Mendes, Susana Sargento, "Study on the Effect of
Network Dynamics on Opportunistic Routing", in Proc. of AdhocNow, Belgrade, Serbia, July 2012

[11] Waldir Moreira, Paulo Mendes, Susana Sargento, "Social-aware Opportunistic Routing

Protocol based on User's Interactions and Interests", in Proc. of AdhocNets, Barcelona, Spain,
October 2013

https://datatracker.ietf.org/doc/draft-seedorficn-disaster/
https://datatracker.ietf.org/doc/draft-seedorficn-disaster/
http://dx.doi.org/10.1145/2980137.2980141

81

[12] Waldir Moreira, Paulo Mendes, "Social-aware Opportunistic Routing: The new trend",
Springer Book on Routing in Opportunistic Networks, ISBN 978-1-4614-3513-6, August 2013

[13] Waldir Moreira, Paulo Mendes, “Dynamics of Social-aware Pervasive Networks” in Proc. of
IEEE PERCOM workshop (PerMoby), St. Louis, USA, March 2015

[14] A. Mtibaa, M. May, M. Ammar, and C. Diot, Peoplerank, “Combining social and contact

information for opportunistic forwarding” ,in Proceedings of INFOCOM, (San Diego, USA), March,
2010.

[15] I. Psaras, L. Saino, and G. Pavlou. "Revisiting resource pooling: The case for in-network

resource sharing." Proceedings of the 13th ACM Workshop on Hot Topics in Networks. ACM,
2014.

