
	

	

Action	full	title:	
Universal,	mobile-centric	and	opportunistic	

communications	architecture	
Action	acronym:		

UMOBILE	
	

	
	

Deliverable:	
D4.1	“Flowlet	Congestion	Control	–	Initial	

Report”	
Project	Information:	
Project	Full	Title Universal,	mobile-centric	and	opportunistic	communications	architecture

Project	Acronym UMOBILE

Grant	agreement	number 645124

Call	identifier H2020-ICT-2014-1

Topic ICT-05-2014	Smart	Networks	and	novel	Internet	Architectures

Programme EU	Framework	Programme	for	Research	and	Innovation	HORIZON	2020

Project	Coordinator Prof.	Vassilis	Tsaoussidis,	Democritus	University	of	Thrace

	
	

	

	

	

Deliverable	Information:	
Deliverable	Number-Title D4.1	Flowlet	Congestion	Control	–	Initial	Report

WP	Number WP4

WP	Leader SENCEPTION

Task	Leader	(s) UCAM

Authors

DUTH:	Sotiris	Diamantopoulos,	Ioannis	Komnios,	Vassilis	Tsaoussidis	
UCL:	Ioannis	Psaras,	Sergi	Rene	
UCAM:	Jon	Crowcroft,	Adisorn	Lertsinsrubtavee,	Arjuna	Sathiaseelan,	Carlos	
Molina-Jimenez

Contact 	i.psaras@ucl.ac.uk,	s.rene@ucl.ac.uk

Due	date M18:	31/07/2016

Actual	date	of	submission --/--/2016

	

Dissemination	Level:	
PU Public x

CO Confidential,	only	for	members	of	the	consortium	(including	the	Commission	Services)

CI Classified,	as	referred	to	in	Commission	Decision	2001/844/EC
	

	
Document	History:	
Version	 Date Description

Version	0.1 07/07/16 First	draft	of	the	flowlet	congestion	control

Version	0.2 19/07/16 Second	draft	to	the	consortium	of	the	flowlet	congestion	control

Version	0.3 30/07/16 Some	modifications	before	the	final	version

Version	0.4
	
	
	
	
	
	
	

	

	

Table of Contents
	

List	of	definitions	...	4	
Executive	Summary	..	6	
1. Introduction	..	7	
2. Congestion	control	in	UMOBILE	...	10	
2.1	Congestion	control	in	TCP/IP	..	10	

2.2	Congestion	control	in	NDN	...	11	

3. INRPP	over	TCP/IP	networks	..	13	
3.1	Framework	overview	..	14	

3.2	INRPP	mechanisms	..	19	

3.3	INRPP	results	..	21	

4. INRPP	over	UMOBILE	NDN	networks	..	38	
4.1	INRPP	NDN	design	principles	...	38	
4.2	INRPP	implementation	identified	issues	...	39	

5. Conclusions	..	42	
References	..	43	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	

List of definitions

Term Meaning

DTN Delay	 Tolerant	 Network	 (DTN)	 is	 an	 emerging	 technology	 that	 supports	
interoperability	of	other	networks	by	accommodating	long	disruptions	and	
delays	 between	 and	within	 those	 networks.	DTN	operates	 in	 a	 store-and-
forward	 fashion	 where	 intermediate	 nodes	 can	 temporary	 keep	 the	
messages	 and	 opportunistically	 forward	 them	 to	 the	 next	 hop.	 This	
inherently	deals	with	 temporary	disruptions	and	allows	connecting	nodes	
that	would	be	disconnected	in	space	at	any	point	in	time	by	exploiting	time-
space	paths.		

ICN Information-Centric	 Network	 (ICN)	 has	 emerged	 as	 a	 promising	 solution	
for	the	future	Internet's	architecture	that	aims	to	provide	better	support	for	
efficient	information	delivery.	ICN	approach	uniquely	identifies	information	
by	 name	 at	 the	 network	 layer,	 deploys	 in-network	 caching	 architecture	
(store	 information	 at	 the	 network	 node)	 and	 supports	 multicast	
mechanisms.	 These	 key	 mechanisms	 facilitate	 the	 efficient	 and	 timely	
information	(contents	and	services)	delivery	to	the	end-users.	

Content Content	 refers	 to	 a	 piece	 of	 digital	 information	 that	 is	 disseminated	 and	
consumed	by	end-user	equipment.		

Node A	wireless	or	wired	capable	device.

User An	entity	 (individual	or	 collective)	 that	 is	both	a	 consumer	and	a	 relay	of	
user	services.

User	Service Context-aware	 services	 are	 considered	 as	 a	 set	 of	mechanisms	 that	 assist	
incorporating	information	about	the	current	surrounding	of	mobile	users	in	
order	to	provide	more	relevant	of	services.	

User	Interest A	parameter	 capable	of	providing	a	measure	 (cost)	 of	 the	 “attention”	of	 a	
user	 towards	 a	 specific	 (piece	 of)	 information	 in	 a	 specific	 time	 instant.	
Particularly,	 users	 can	 cooperate	 and	 share	 their	 personal	 and	 individual	
interests	 that	 enable	 the	 social	 interactions	 and	 data	 sharing	 across	
multiple	users.

User	
Requirement

User	requirement	corresponds	to	the	specifications	that	users	expect	from	
the	application.	

Upstream Upstream	 traffic	 refers	 to	 outgoing	 data	 such	 as	 short	message,	 photo	 or	
uploading	video	clips	that	are	sent	from	user	equipment.

Downstream Downstream	 traffic	 refers	 to	 data	 is	 obtained	 by	 use	 equipment	 from	
network.	 This	 includes	 downloading	 files,	 web	 page,	 receiving	 messages,	
etc.	

	

	

	

	
	
	

	

	

	

Gateway Gateway	typically	means	an	equipment	installed	at	the	edge	of	a	network.	It	
connects	 the	 local	 network	 to	 larger	 network	 or	 Internet.	 In	 addition,	
gateway	also	has	a	capability	to	store	services	and	contents	in	its	cache	to	
subsequently	provide	local	access	communication.

UMOBILE	System UMOBILE	 System	 refers	 to	 an	 open	 system	 that	 provides	 communication	
access	to	users	through	wired	or	wireless	connectivity.	This	system	exploits	
the	benefit	of	local	communication	to	minimize	upstream	and	downstream	
traffic.	 The	 services	 or	 contents	 can	 be	 exchanged	 and	 stored	 in	 several	
devices	such	as	gateways;	user	equipments;	customer	premises	equipments	
such	 as	 WiFi	 Access	 Points	 in	 order	 to	 efficiently	 delivery	 the	 desired	
contents	or	services	to	end-users.	

UMOBILE	
Architecture

A	 mobile-centric	 service-oriented	 architecture	 that	 efficiently	 delivers	
contents	 and	 services	 to	 the	 end-users.	 The	 UMOBILE	 architecture	
integrates	 the	 principles	 of	 Delay	 Tolerant	 Networks	 (DTN)	 and	
Information-Centric	Networks	(ICN).	

User-equipment User-equipment	(UE)	corresponds	to	a	generic	user	terminal	(for	example	
smart	 phone	 or	 notebook).	 In	 terms	 of	 UE	 and	 for	 operating	 systems	we	
consider	 mainly	 smartphones	 equipped	 with	 Android;	 notebooks	 with	
UNIX,	Windows,	Mac	OS.

Application Computer	software	design	to	perform	a	single	or	several	specific	tasks,	e.g.	
a	 calendar	and	map	services.	 In	UMOBILE,	 context-aware	applications	are	
considered.

Service Service	 refers	 to	 a	 computational	operation	or	 application	 running	on	 the	
network	which	can	fulfil	an	end-user’s	request.	The	services	can	be	hosted	
and	computed	in	some	specific	nodes	such	servers	or	gateways.	Specifically,	
service	 is	normally	provided	for	remuneration,	at	a	distance,	by	electronic	
means	 and	 at	 the	 individual	 request	 of	 a	 recipient	 of	 services.	 For	 the	
purposes	of	this	definition;“at	a	distance”	means	that	the	service	is	provided	
without	 the	 parties	 being	 simultaneously	 present;	 “by	 electronic	 means”	
means	 that	 the	 service	 is	 sent	 initially	 and	 received	 at	 its	 destination	 by	
means	 of	 electronic	 equipment	 for	 the	 processing	 (including	 digital	
compression)	and	storage	of	data,	and	entirely	 transmitted,	 conveyed	and	
received	 by	wire,	 by	 radio,	 by	 optical	means	 or	 by	 other	 electromagnetic	
means;	 “at	 the	 individual	 request	of	a	 recipient	of	 services”	means	 that	 the	
service	is	provided	through	the	transmission	of	data	on	individual	request.	
Refer	to	D2.2	for	further	details.	

NDN Named	Data	Networking

	

	

Executive Summary
This	deliverable	(D4.1)	is	the	first	out	of	five	to	be	produced	by	WP4	to	deal	with	QoS.	In	
WP4	we	address	the	challenges	of	QoS	with	congestion	control	mechanisms	that	enhance	
QoS	by	means	of	avoiding	congestion	problems	 that	might	 result	 in	packet	 loss,	 latency	
and	low	throughput.	

The	UMOBILE	project	devises	interactions	between	two	different	domains	(see	Figure	1):	

• The	UMOBILE	Domain	which	 is	 a	 local	 network	 running	 the	UMOBILE	 protocols	
(e.g.,	 NDN,	 DTN).	 Providing	 the	 Internet	 access	 in	 this	 domain	 is	 optional	 as	
UMOBILE	users	can	access	the	local	services	through	public	hotspot	(e.g.,	WiFi	AP)	
or	WiFi	direct	(e.g.,	direct	connection	among	users).			

• The	Internet	Domain	is	the	conventional	TCP/IP	Internet	and	is	an	extension	of	the	
UMOBILE	 Domain	 where	 UMOBILE	 users	 (running	 either	 TCP/IP,	 NDN	 or	 DTN		
protocols)	can	access	 Internet	services.	 	For	 instance,	as	shown	 in	 the	 figure,	 the	
UMOBILE	 network	 can	 have	 a	 proxy	 or	 gateway	 running	 TCP/IP	 in	 order	 to	
connect	to	the	Internet.	

D4.1	 discusses	 the	 first	 version	 of	 a	 congestion	 control	 protocol,	 called	 In-Network	
Resource	 Pooling	 Protocol	 (INRPP)	 that	 addresses	 congestion	 control	 in	 TCP/IP	
networks.	 It	extensively	covers	the	specifications	for	a	Flowlet	Congestion	Control	 to	be	
used	 in	 the	 Internet	Domain.	 In	 addition,	we	 introduce	 a	 preliminary	 discussion	 of	 the	
development	of	the	Flowlet	Congestion	Control	to	be	used	in	the	UMOBILE	Domain.	The	
final	version	of	the	protocol	will	be	discussed	in	D4.2.		

In	D4.1	we	also	provides	a	broad	performance	evaluation	through	simulations	to	assess	
the	INRPP	mechanisms	and	to	quantify	the	improvement	of	INRPP	over	other	congestion	
control	protocols.	

D4.1	 is	 based	 on	 deliverables	 D2.1,	 D2.2,	 D3.1	 and	 D3.3.	 Deliverables	 D2.1	 and	 D2.2	
describe	 the	 requirements	 of	 the	 end-user	 and	 the	 system,	 respectively.	 On	 the	 other	
hand,	D3.1	and	D3.3	cover	the	UMOBILE	architecture.	

The	methodology	used	in	this	deliverable	is	as	follows:	

• We	 identify	 congestion	 control	 limitations	 that	 can	 be	 improved	 using	 in-
network	resources.	

• We	detail	a	 set	of	mechanisms	required	 for	 the	 INRPP	 to	 implement	 the	new	
congestion	control	over	TCP/IP	networks	

• We	provide	an	extensive	evaluation	of	the	INRPP	congestion	control	approach		

• We	 describe	 the	 next	 steps	 for	 an	 implementation	 of	 the	 INRPP	 congestion	
control	 over	 NDN-based	 networks	 that	 can	 be	 extended	 to	 the	 UMOBILE	
Domain.	

	

	

1. Introduction
In	 the	 UMOBILE	 project	 (specified	 in	 the	 deliverable	 D3.3)	 we	 devise	 two	 different	
domains	(see	Figure	1),	the	Interned	Domain,	where	UMOBILE	users	can	access	Internet-
based	services	through	public-hotspots	or	network	gateways,	and	the	UMOBILE	Domain,	
where	the	communications	are	 inherently	wireless---this	 is	why	we	call	 it	 the	UMOBILE	
wireless	 Domain	 in	 this	 document.	 Notice	 that	 well	 planned	 infrastructure		
communications	in	the	UMOBILE	wireless	Domain	is	optional,	thus	in	disaster-affected	or	
neglected	rural	areas,	UMOBILE	users	are	still	able	to	transmit	their	data	to	other	users.	
In	 this	 document,	 we	 first	 focus	 on	 a	 flowlet	 congestion	 control	 based	 on	 in-network	
resource	pooling	for	the	Internet	Domain.		

	
	

Figure 1 - UMOBILE architecture

Congestion	 control	 refers	 to	 techniques	 and	 mechanisms	 that	 can	 avoid	 congestive	
collapse	between	two	end	points	by	controlling	the	rate	of	sending	packet	There	are	two	
main	 uncertainty	 factors	 that	 fuel	 fear	 of	 instability	 and	 with	 which	 any	 reliable	
congestion	control	protocol	has	to	deal	with:	i)	the	input	load	factor:	the	network	does	not	
know	how	much	data	the	senders	will	put	in	the	network,	and	ii)	the	demand	factor:	there	
might	be	excessive	demand	for	bandwidth	over	some	particular	area/link.	The	Transport	
Control	 Protocol	 (TCP),	 for	 instance,	 defends	 against	 the	 input	 load	 factor	 through	 the	

	

	

Additive	 Increase/Multiplicative	Decrease	 transmission	model	 [8,9],	while	 it	 deals	with	
the	demand	factor	by	adopting	the	“one-out,	one-in"	packet	transmission	principle	(only	
when	a	packet	gets	out	of	the	network	is	a	new	one	allowed	in).	Those	two	mechanisms	
are	 closely	 linked	and	 interrelated	and	 lead	 to	TCP's	defensive	behaviour	by	effectively	
(proactively)	 suppressing	 demand.	 In	 essence,	 end-points	 have	 to	 speculate	 on	 the	
available	 resources	 along	 the	 end-to-end	 path	 and	 move	 traffic	 as	 fast	 as	 the	 path's	
slowest	link.			

	
Figure 2 - Left: e2e Flow Control: Bandwidth is split according to the slowest link on the path. Right: In-network resource
pooling: Bandwidth is split equally up to the bottleneck link (global fairness). Detour applies to guarantee local stability.

Given	 the	 single-path	nature	of	TCP,	moving	 traffic	 according	 to	 the	path’s	 slowest	 link	
guarantees	global	stability	(i.e.,	stability	along	the	e2e	path	through	e2e	rate-adaptation).	
Fairness	 on	 the	 other	 hand,	 is	 guaranteed	 locally	 (i.e.,	 based	 on	 the	 capacity	 of	 the	
bottleneck	 link).	 We	 argue	 against	 this	 relationship	 and	 in	 the	 spirit	 of	 in-network	
resource	 pooling	 propose	 that:	 i)	 stability	 should	 be	 local,	 and	 ii)	 fairness	 should	 be	
global.	Local	stability	demands	that	the	node	before	the	bottleneck	link	takes	appropriate	
action	when	 conditions	 deteriorate.	 Global	 fairness	 on	 the	 other	 hand	 requires	 that	 all	
resources	 up	 until	 the	 bottleneck	 link	 are	 shared	 equally	 among	 participating	 flows.	
Consider	two	flows	in	the	topology	of	Fig.	2.	According	to	the	e2e	flow	control	of	TCP	(left	
part),	the	flow	that	traverses	the	bottleneck	link	(2-4)	would	achieve	2Mbps	throughput	
(global	stability),	while	the	second	flow	would	dominate	the	shared	link	(1-2)	and	achieve	
8Mbps	 throughput.	 According	 to	 Jain’s	 Fairness	 Index	 [11],	 given	 by,	 where	 T	 is	 each	
flow’s	 throughput	and	n	 is	 the	 total	number	of	 flows,	 the	system	fairness	 in	 this	case	 is	
0.73.	 In	 case	more	 than	 one	 flows	 traverse	 the	 bottleneck	 link	 (2-4),	 they	would	 share	
equally	 the	 available	 bandwidth	 (local	 fairness).	 In	 contrast,	 according	 to	 the	 global	
fairness,	 the	 shared	 link	 (1-2)	 is	 split	 equally	 among	 the	 two	 flows.	 Node	 2	 has	 two	
options	in	this	case:	i)	find	alternative	routes	to	reach	node	4	(local	stability),	or	ii)	notify	
node	1	to	reduce	its	sending.	In	the	topology	of	Fig.	2,	node	3	can	accommodate	the	extra	
3Mbps.	In	this	case,	Jain’s	index	indicates	perfect	system	fairness	equal	to	1.	

Within	 the	 UMOBILE	 project,	 we	 aim	 to	 design	 and	 evaluate	 the	 In-Network	 Resource	
Pooling	Protocol	(INRPP)	[10],	which	pools	bandwidth	and	in-network	cache	resources	in	
a	novel	congestion	control	framework	to	reach	global	fairness	and	local	stability.			Taking	
profit	 of	 the	 hop-by-hop	 design	 and	 the	 caching	 capabilities	 inherent	 in	 the	 NDN	

	

	

networks,	 or	 adding	 caches	 (i.e.,	 temporary	 storage)	 and	 breaking	 the	 end-to-end	
principle,	we	argue	that	the	demand	factor	can	be	tamed.	 	Given	this	functionality	of	 in-
network	storage,	INRPP	comprises	three	different	modes	of	operation:	i)	push:	content	is	
pushed	 as	 far	 in	 the	 path	 as	 possible	 in	 an	 open-loop,	 processor	 sharing	manner	 [11],	
based	on	the	path's	hop-by-hop	bandwidth	resources	to	take	advantage	of	under-utilised	
links;	ii)	store	and	detour:	when	pushed	data	reaches	the	bottleneck	link,	the	excess	data	
is	 cached	and	simultaneously	 forwarded	 through	detour	paths	 towards	 the	destination;	
iii)	backpressure:	if	detour	paths	do	not	exist	or	have	insufficient	bandwidth,	the	system	
enters	 a	 backpressure	 mode	 of	 operation	 [12,	 13]	 to	 avoid	 overflowing	 of	 the	 cache.	
During	the	backpressure	mode,	the	nodes	enter	a	closed-loop	mode,	where	an	upstream	
node	 sends	 one	 data	 packet	 per	 one	 received	 ACK	 to	 the	 backpressuring	 downstream	
node.		

In	this	first	version	of	the	flowlet	congestion	control	deliverable	we	present	the	complete	
design,	including	the	framework	overview,	the	different	mechanisms	used	by	the	solution	
and	 an	 extensive	 performance	 evaluation	 of	 the	 INRPP	 congestion	 framework	 in	 the	
Internet	domain	over	TCP/IP.	However,	we	also	 include	a	 section	 (Section	3)	about	 the	
next	 steps	 to	 follow	 to	 implement	 a	 flowlet	 congestion	 control	 based	 on	 INRPP	 in	 the	
UMOBILE	Domain	(over	NDN),	that	will	be	completed	and	detailed	in	the	second	version	
of	this	document	that	we	will	submit	in	month	30.		

The	document	is	organized	as	follows.		

• Section	 2	 presents	 an	 overview	 of	 congestion	 control	 in	 UMOBILE	 and	
related	work	in	TCP/IP	and	NDN	networks.		

• Section	 3	 presents	 the	 framework	 overview	 and	 the	 mechanisms	 of	 the	
INRPP	for	congestion	control	over	TCP/IP.		

• Section	 4	 introduces	 the	 next	 steps	 to	 implement	 INRPP	 over	 an	 NDN-
based	solution	for	the	UMOBILE	project.	

• Section	5	concludes	this	deliverable.		

	

	

2. Congestion control in UMOBILE
As	mentioned	in	the	Introduction	section,	congestion	control	has	been	intensively	studied	
in	the	conventional	TCP	protocols	for	which	several	algorithms	are	known	to	ameliorate	
the	problem.	The	techniques	used	heavily	depend	on	the	particularities	(for	example,	the	
existence	 of	 unique	 source	 and	 destination	 addresses)	 of	 TCP/IP,	 consequently,	 they	
cannot	be	directly	ported	to	ICN	networks	where	the	problem	has	received	less	attention.		

To	help	cover	the	gap,	in	D4.1	we	introduce	the	Flowlet	Congestion	Control,	which	to	our	
knowledge,	 is	 one	 of	 the	 first	 attempts	 to	 address	 the	 problem.	 In	 this	 section,	we	will	
include	 a	 discussion	 of	 other	 alternatives	 that	 have	 been	 brought	 to	 our	 attention.	 To	
place	 the	 Flowlet	 Congestion	 Control	 in	 context,	 we	 include	 a	 discussion	 of	 congestion	
control	in	TCP/IP.		

2.1 Congestion control in TCP/IP
Regarding	the	Internet	domain,	the	common	practice	among	ISPs	to	move	the	bottleneck	
to	 the	edge	of	 the	network	(i.e.,	DSLAM	to	user)	restricts	users	 from	taking	up	as	much	
bandwidth	 as	 possible.	 As	 we	 move	 towards	 a	 FTTx	 environment,	 however,	 the	
bottleneck	 will	 inevitably	 move	 to	 the	 core	 of	 the	 network	 causing	 severe	 congestion	
events.	 Over-provisioning	 of	 core	 links	 will	 not	 be	 an	 option	 anymore	 and	 therefore	
alternative	 solutions	 will	 need	 to	 be	 found.	 Multi-Path	 TCP	 [40]	 has	 received	 wide	
attention	recently	due	to	its	ability	to	take	advantage	of	multiple	e2e	paths.	However,	the	
requirement	for	multihoming	of	MPTCP	(and	mTCP	[41])	have	driven	adoption	of	MPTCP	
to	 controlled,	 data-centre	 environments	 mainly	 [42].	 INRPP	 builds	 on	 the	 previously	
proposed	 Resource	 Pooling	 Principle	 [43,	 44]	 and	 extends	 it	 to	 also	 utilise	 midpath	
multipath	without	the	equal-cost	requirement	of	ECMP	[45].	

Multipath	routing	on	the	other	hand	has	been	studied	in	the	context	of	traffic	engineering	
in	 the	 core	 of	 the	 network	 [46-49],	 mainly	 for	 load-balancing	 reasons	 [45,49].	 Despite	
extensive	studies	on	multi-path	routing	[50-52]	and	multipath	congestion	control	[53-55],	
these	two	arguably	complementary	areas	remain	remarkably	decoupled.	There	has	been	
no	previous	attempt	to	combine	the	benefits	of	multipath	routing	and	congestion	control	
into	a	common	resource	pooling	principle	in	order	to	improve	overall	resource	utilisation.		

In	 the	 context	 of	 the	 H2020	 POINT	 (iP	Over	IcN–	 the	 betTer	 IP)	project,	 the	 partners	
involved	recently	proposed	a	new	Multiflow	Congestion	Control	with	Network	Assistance	
[56].	 This	 new	 congestion	 control	 is	 a	 novel	 hybrid	 congestion	 control	 algorithm.	 It	 is	
based	 on	 MPTCP	 and	 uses	 an	 in-network	 module	 that	 offers	 essential	 topological	
information	 to	 avoid	 sharing	 bottlenecks	 between	 different	 subflows.	 As	 a	 result,	 it	
extends	 the	 bandwidth	 available	 to	 the	 end-users.	 However,	 this	 Multiflow	 Congestion	
Control	 with	 Network	 Assistance	 relies	 on	 MPTCP.	 Thus	 is	 suffers	 from	 the	 same	
drawbacks	as	TCP	regarding	the	aforementioned	e2e	flow	control.	Even	when	not	sharing	
bottlenecks,	MPTCP	has	not	enough	knowledge	on	the	network	to	provide	global	fairness	
and	local	stability	due	to	e2e	flow	control.	

	

	

With	 the	 In-Network	 Resource	 Pooling	 Protocol	 we	 make	 a	 first	 attempt	 to	 bring	 the	
worlds	of	multipath	congestion	control	and	multipath	routing	closer	 together.	Although	
much	 of	 INRPP's	mechanisms	 can	 be	 replaced	 or	 redesigned	 to	 fit	 to	 specific	 network	
needs,	 our	 detailed	 design	 and	 evaluation	 shows	 that	 the	 proposed	 set	 of	mechanisms	
work	 smoothly	 together.	 At	 the	 same	 time,	 the	 significant	 performance	 gains	 observed	
motivated	 as	 to	 research	 a	 combined	 multipath	 routing	 and	 congestion	 control	
framework.	

2.2 Congestion control in ICN
Since,	the	UMOBILE	domain	relies	on	the	NDN	transport	protocol	which	is	different	from	
the	traditional	TCP/IP,	the	existing	TCP	congestion	control	algorithms	cannot	be	applied	
directly	 in	 the	 UMOBILE	 network.	 For	 instance,	 NDN	 follows	 the	 connection	 less	 and	
multi-source	communication	where	the	desired	Data	packets	can	be	retrieved	from	many	
sources.	 As	 such	 some	 congestion	 detection	mechanisms	 like	 Retransmission	 Time	Out	
(RTO)	may	not	be	feasible	in	NDN,	since	it	requires	a	single	source-path	communication	
between	source	and	destination	nodes	[34].	However,	congestion	control	algorithms	over	
NDN	can	take	advantages	of	ICN	features.		

In	NDN,	routers	can	manage	traffic	load	through	managing	the	Interest	forwarding	rate	on	
a	 hop-by-hop	 basis;	 when	 a	 router	 is	 overloaded	 by	 incoming	 data	 traffic	 from	 any	
specific	 neighbour,	 it	 simply	 slows	 down	 or	 stop	 sending	 Interest	 packets	 to	 that	
neighbour.	This	also	means	that	NDN	eliminates	the	dependency	on	end	hosts	to	perform	
congestion	control.	Once	congestion	occurs,	data	retransmission	is	aided	by	caching	since	
the	retransmitted	Interest	will	meet	the	Data	right	above	the	link	the	packet	was	lost,	not	
the	 original	 sender.	 Thus	 NDN	 avoids	 congestion	 collapse	 that	 can	 occur	 in	 today’s	
Internet	 when	 a	 packet	 is	 lost	 at	 the	 last	 hop	 and	 bandwidth	 is	 mostly	 consumed	 by	
repeated	retransmissions	from	the	original	source	host.	In	addition,	the	NDN	routers	can	
benefit	from	the	use	of	PIT	entry	while	managing	the	traffic	load	through	the	size	of	PIT	
entry	[35].	As	each	PIT	entry	records	a	pending	Interest	request	that	has	been	forwarded,	
waiting	for	the	Data	message	to	return.	Each	NDN	router	can	directly	control	the	rate	of	
traffic	by	controlling	the	rate	of	forwarding	Interest.	These	inherent	features	of	NDN	are	
very	 useful	 for	 hop-by-hop	 congestion	 control.	 This	 feature	 clearly	 benefits	 the	 In-
Network	Resource	Principle	that	aims	at	breaking	the	e2e	congestion	control	to	provide	a	
hop-by-hop	congestion	control.	 	Using	 INRPP	we	can	use	 inherent	caching	 features	as	a	
temporary	custodian	 to	deal	with	congestion	 locally,	detouring	 traffic	when	other	paths	
are	 possible	 and	 doing	 backpressure	 to	 the	 sender	 node	 when	 no	more	 traffic	 can	 be	
allocated.		

Relevant	to	D4.1	is	the	discussion	of	Flow	Classification	in	ICN	presented	in	an	informal	
Internet	draft	[36]	submitted	recently	by	Moiseenko	and	Oran	from	Cisco	Systems.		They	
suggest	 two	mechanisms	(Equivalent	class	component	count	and	Equivalent	class	name	
component	 type)	 for	 ICN	 flow	 identification	 that	 can	 be	 potentially	 used,	 among	 other	
functionalities,	to	support	congestion	control.	The	key	idea	is	to	identify	flows	by	means	

	

	

of	the	name	prefixes	of	the	Interest	and	Data	packets	exchanged	between	consumers	and	
producers:	 equivalent	 classes	of	 flow	are	 associated	 to	 the	names	 in	 the	 corresponding	
Interest	 and	 Data	 packets.	 In	 [37]	 the	 authors	 discuss	 RRCP---	 a	 congestion	 control	
protocol	for	designed	specifically	for	ICN	networks	and	based	on	the	XCP	(eXplicit	Control	
Protocol)	presented	in	[38].	Though	the	authors	show	only	simulation	results,	they	argue	
that	their	solution	is	promising	as	it	takes	advantage	of	the	main	features	of	ICN	transport	
like	consumer-driven	data	transfer	and	in-network	caching.	A	comprehensive	survey	on	
congestion	control	in	ICN	is	presented	in	[39].		

Recent	efforts	in	the	ICN	transport-layer	area	have	mainly	focused	on	adjusting	the	main	
congestion	control	mechanisms	of	TCP	and	AIMD	to	fit	to	an	ICN	environment	(e.g.,	[24-
30]).	Closer	to	our	INRPP	work	are	[27],	[28]	and	[30].	Although	the	protocol	in	[30]	uses	
detours	to	 find	 less	utilised	 links	(similar	to	the	concept	of	 INRP),	 it	 then	deploys	AIMD	
over	 single	 paths	 to	 regulate	 the	 sending	 rates,	 hence,	 adopts	 the	 drawbacks	 of	 TCP.		
Furthermore,	 detouring	 in	 [30]	 takes	 place	 at	 the	 Interest	 phase	 (instead	 of	 the	 data	
phase),	hence,	its	accuracy	is	bound	to	be	outdated	by	approximately.	 	The	work	in	[28]	
on	 the	 other	 hand,	 is	 based	 on	 hop-by-hop	 rates	 to	 shape	 the	 rate	 of	 interests	 and	
therefore,	 data	 as	 well	 (similarly	 to	 [31]).	 	 Note	 that	 none	 of	 the	 above	 ICN-oriented	
transports	has	been	evaluated	together	with	caches,	something	that	completely	rules	out	
the	benefits	of	in-network	storage	and	limits	the	full	potential	of	the	ICN	paradigm.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

3. INRPP over TCP/IP networks
Congestion	control	has	been	the	topic	of	endless	research	ever	since	the	standardisation	
of	 the	 Internet's	main	transport	protocol,	 the	Transmission	Control	Protocol	(TCP).	TCP	
acts	 as	 the	 main	 transmission	 chain	 between	 any	 two	 endpoints	 in	 the	 Internet,	
transmitting	data	with	 strict	end-to-end	 feedback	controls,	 in	order	 to	avoid	congestive	
collapse	 [1].	 Although	 TCP's	 main	 principles	 have	 kept	 the	 Internet	 running	 without	
major	congestion	events	for	decades,	numerous	performance	issues	have	been	repeatedly	
identified	 (e.g.,	 [2,3]).	 Solutions	 to	 these	 problems	 [4,	 5,	 6,	 7]	 have	 continuously	 and	
stubbornly	been	rejected	mainly	due	to	fear	of	instability.		

In	 this	 Section	we	 present	 a	 new	 congestion	 control	 for	 TCP/IP	 networks	 based	 in	 In-
network	resource	pooling,	that	we	named	In-network	Resource	Pooling	Protocol	(INRPP).	
INRPP	inherently	prerequisites	availability	of	alternative	sub-paths	(to	allow	for	detours)	
and	 in-network	 content	 caches.	 While	 adding	 cache	 capacity	 in	 routers	 requires	 extra	
investment,	the	cost	of	the	memory	itself	has	fallen	to	affordable	levels	and	we	therefore,	
assume	 this	not	 to	be	a	prohibitive	 factor.	That	 said,	 in	order	 to	prove	 the	 feasibility	of	
having	one	or	more	detour	paths,	in	the	Internet	domain,	to	divert	excessive	traffic	at	the	
router	level,	we	analysed	a	set	of	real	topologies	(from	Rocketfuel	[14])	for	nine	ISPs	(see	
Table	1).	Indeed,	we	found	that	six	out	of	the	nine	real	network	topologies	analysed	can	
provide	at	least	one	1-hop	detour	path	on	more	than	50%	of	links,	reaching	up	to	92.3%	
for	 Level-3	 topology	 (second	 column).	 Columns	3-7	 show	how	 the	percentage	 of	 1-hop	
detour	paths	(shown	in	column	2)	is	split	between	1-,	2-,	3-,	4-	and	5+-hop	detour	paths.	
For	instance,	out	of	Telstra's	68.75%	of	paths	that	have	a	1-hop	detour,	7.9%	have	four	1-
hop	 detour	 sub-paths	 along	 the	main	 path.	 Overall,	we	 see	 that,	 in	most	 cases,	when	 a	
detour	path	exists,	there	is	more	than	one	detour	sub-path	along	the	same	edge-to-edge	
path.	 The	 extreme	 case	 of	 the	 Level3	 network	 shows	 that	 47.06%	 of	 its	 edge-to-edge	
paths	with	at	 least	one	detour	 sub-path	have	 five	or	more	1-hop	detour	 sub-paths.	The	
final	 column	 in	 Table	 1	 is	 the	 maximum	 number	 of	 1-hop	 detour	 sub-paths	 that	 the	
topology	 has	 for	 at	 least	 one	 of	 its	 links.	 Overall,	we	 observe	 that	 networks	 are	 rather	
well-connected	and	would	realistically	allow	for	detouring	of	excessive	traffic	mid-path	in	
the	network.	

	

	

	

	

	

	

	

	

	

	

Network 1-hop	detour
Number	of	detour	paths	(%	of	col.	2) Max		

1-hop
1 2 3 4 5+

Telstra 68.75	% 27.45 30.09 11.5 7.9 23.06 38

Sprintlink 57.3	% 44.9 20.7 14.9 6.8 57.6 27

Ebone 51.8	% 55.5 28.78 10.6 3.53 1.5 10

Verio 71.75	% 23.56 18.01 13.45 12.56 32.52 25

Tiscali 24.44	% 60.60 19.19 12.12 5.05 3.03 8

Level3 92.30	% 13.40 14.10 12.42 13.02 47.06 95

Exodus 50.33	% 50.67 17.93 16.59 8.96 5.82 6

VSNL 25	% 100 0 0 0 0 1

AT&T 34.84	% 56.07 17.68 11.88 4.7 9.67 24

	
Table 1 – Detour paths in real topologies

INRPP	requires	several	new	mechanisms	and	protocols	to	be	implemented	by	the	routers,	
while	minor	modifications	 are	 required	 for	 the	 TCP/IP	 agents	 at	 the	 end-points,	 more	
substantial	 changes	 are	 necessary	 in	 the	 routers.	 Next	we	 describe	 an	 overview	 of	 the	
framework,	we	discuss	how	backpressure	requests	propagate,	and	we	explain	the	cache	
storage	 system.	 Then,	 we	 discuss	 computation	 of	 detour	 paths	 and	 the	
computation/advertisement	 of	 residual	 bandwidth	 on	 detour	 paths.	 Finally,	we	 discuss	
the	changes	to	the	TCP	agents	at	the	end-points.	

3.1 Framework Overview
An	INRPP	router	has	a	single	cache	storage,	which	is	shared	among	all	interfaces;	that	is,	
excess	 data	 from	 all	 the	 bottleneck	 links	 are	 stored	 in	 the	 cache.	 An	 INRPP	 router	 is	
shown	 in	 Figure	 3.	 For	 the	 purposes	 of	 this	 report	we	 assume	 that	 flows	 follow	 1-hop	
detours	 only,	 i.e.,	 no	 2-	 or	 more-hop	 detours	 are	 considered.	 Each	 out-going	 link	 of	 a	
router	 is	 associated	 with	 zero	 or	 more	 one-hop	 detour	 paths,	 which	 are	 computed	
through	a	minor	extension	to	the	existing	distributed	path	computation	mechanism	of	the	
intra-domain	protocols	(see	Section	3.3).	

	

	

	
Figure 3 - INRPP router (zoomed in the box on the right) and a detour example: Router r has a detour path through router d to
reach n as shown with the dashed lines

At	any	given	time,	each	interface	of	an	INRPP	router	is	in	one	of	the	four	states:	Push	(P),	
Store	and	Detour	(S&D),	Backpressure	(B),	and	Disable	Backpressure	(DB)	state	as	shown	in	
Table	2.	Below,	we	describe	each	of	the	states	using	a	state	transition	diagram	depicted	in	
Figure	4.	Our	notation	is	given	in	Table	3:	

State	Abbreviation Definition

 Push

 Store	and	Detour

 Backpressure

 Disable	Backpressure

Table 2 - INRPP states

• Push	(P):	 In	this	state,	 the	router	 interface	 is	able	to	 forward	all	 the	 incoming	
data	to	its	outgoing	interface	in	a	processor	sharing	manner,	without	using	its	
cache	storage	or	detour	paths.	The	Push	state	 is	maintained	while	there	 is	no	
congestion,	 i.e.,	 no	 excess	 data,	 at	 the	 outgoing	 interface	 queue.	 In	 order	 to	
detect	congestion	at	its	interfaces,	routers	continuously	monitor	the	occupancy	
of	 their	 outgoing	 interface	 buffers.	 We	 define	 an	 upper-bound	 and	 a	 lower-
bound	 on	 the	 occupancy	 of	 the	 interface	 queues	 to	 detect	 congested	 and	
uncongested	 state	 at	 the	 queues,	 respectively.	 In	 particular,	 if	 the	 buffer	
occupancy	of	an	interface	of	a	router	exceeds	(i.e.,	upper	bound),	then	interface	
moves	to	Store-and-Detour	(S&D)	mode.	

	

	
	

Figure 4 - INRPP state transition diagram
	

	

	

• Store-and-Detour	 (S&D):	While	 its	 interface	 is	 in	 S&D	 state,	 the	 router	 starts	
storing	 all	 the	 incoming	 packets,	 whose	 next-hop	 is	 determined	 (by	 the	
forwarding	 table	 lookup)	 to	 be;	 we	 refer	 to	 such	 packets	 as	 the	 interface’s	
traffic,	 denoted	with	 the	 symbol	 (see	Table	 3).	 After	 this	 point,	 pulls	 packets	
directly	from	the	cache	and	sends	them	out	at	the	maximum	rate	of	its	outgoing	
link,	denoted.	At	the	same	time,	the	routers	continuously	monitor	their	share	of	
residual	 capacity	 in	 all	 of	 their	 detour	 paths	 through	 single-hop	
advertisements.	 If	 there	 are	 detour	 paths	 with	 non-zero	 residual	 bandwidth	
capacity,	 the	router	pulls	packets	from	the	cache	and	sends	them	through	the	
detour	interfaces	(that	is,	the	interfaces	facing	the	first	link	of	the	detour	paths)	
at	 the	 rate	 equal	 to	 the	 total	 residual	 bandwidth	 of	 all	 the	detour	paths.	 The	
total	residual	bandwidth	available	for	node's	interface	on	all	its	detour	paths	is	
denoted	 as;	 we	 provide	 a	 detailed	 explanation	 of	 the	 residual	 bandwidth	
calculation	in	Section	3.3.			

Symbol Definition

 Queue	occupancy	at	interface	i	of	node	n

 Upper-bound	occupancy	at	the	buffer	of	interface	i	at	node	n

 Lower-bound	occupancy	at	the	buffer	of	interface	i	at	node	n

 Cache	occupancy	at	node	n

 Upper-bound	occupancy	of	the	cache	at	node	n

 Lower-bound	occupancy	of	the	cache	at	node	n

 Link	i	capacity	at	node	n

 Link	i	traffic	at	node	n

 Residual	bandwidth	on	the	detour	paths	for	link	i	at	node	n

Table 3 - INRPP design notation

	

The	interface	 	stays	in	the	S&D	state	while	excess	data	for	i	is	being	forwarded	and	

the	 total	 cache	 occupancy	 of	 the	 router	 	is	 below	 the	 upper-bound	

.	 When	 the	 arrival	 rate	 of	 the	 interface	 	's	 traffic	 stays	 below	 the	 rate	 at	

which	 	's	 traffic	 is	 sent	out	 through	 the	detour	paths	and	 the	 interface	 itself,	 i.e.,	

	

	

,	the	amount	of	cache	storage	used	by	 	's	traffic	eventually	drops	

to	 zero.	 Note	 that	 it	 is	 possible	 for	 a	 router	 to	 have	 some	 interfaces	 congested	
while	 others	 are	 not.	 If	 the	 occupancy	 of	 the	 main	 cache	 increases	 beyond	 the	
upper-bound	 ,	and	 if	 the	 interface	 	currently	has	 traffic	 stored	 in	 the	cache,	

then	 	switches	 to	 Backpressure	 (B)	 state;	 the	 latter	 condition	 is	 denoted:	

in	Figure	4.	When	 reaches	zero	and	the	occupancy	of	the	queue	buffer	

	falls	 below	 the	 threshold	 ,	 the	 interface	 is	 no	 longer	 congested	 and	 thus,	

switches	back	to	the	Push	mode.	

	
	

Figure 5 - Backpressure Example: On the left-side is the placing of slow-down notifications in ack packets and on the right-
side is the slowing-down of traffic shown with dashed line

• Backpressure	 (B):	 The	 system	 enters	 a	 closed-loop,	 backpressure	 mode	 of	
operation	in	order	to	reduce	the	occupancy	of	the	cache.	In	particular,	when	the	
occupancy	of	 the	router	 's	cache	goes	beyond	the	upperbound	 ,	all	 the	

interfaces,	which	have	traffic	in	the	cache,	i.e.,	all	 	s.t. ,	switch	from	S&D	

mode	 to	 Backpressure	 mode	 of	 operation.	 During	 backpressure	 mode,	 an	
interface	 	sends	“slow-down”	notifications	to	upstream	nodes.	Upon	receiving	

the	 slow-down	 request,	 the	 upstream	nodes	 of	 	start	 performing	 ack	 pacing	

operation	on	only	the	flows	which	are	heading	towards	interface	 .		

As	 an	 example,	 consider	 Figure	 5	 showing	 the	 before	 (left)	 and	 after	 (right)	
snapshots	of	a	topology,	where	node	 	(in	the	centre)	 is	receiving	traffic	 from	

an	upstream	node	 	and	 relaying	 the	 traffic	 to	 downstream	nodes	 ,	 ,	 and	 .	

The	 state	of	 each	 interface	 is	 given	 in	upper-case	 letter	next	 to	 the	out-going	
interface.	 The	 interface	 of	 	connecting	 to	 ,	 which	 is	 named	 	is	 in	

Backpressure	state.	The	state	“X”	is	assigned	to	some	interfaces	as	a	“don't	care	
state”,	 which	 means	 the	 actual	 state	 of	 the	 interface	 is	 irrelevant.	 When	 	

receives	a	slow-down	notice	from	 ,	it	starts	performing	ack	pacing	on	only	the	

	

	

flows	 that	are	part	of	 the	 traffic	 from	 	(shown	with	 the	dashed	 line	

on	right	hand	side).	Flows	to	any	other	interface	of	 	will	not	be	affected.	This	is	

achieved	through	nonce	messages	propagated	upwards,	which	we	discuss	next.	
The	 slow-down	 notifications	 sent	 from	 	are	 piggybacked	 in	 the	

acknowledgement	 packets	 arriving	 to	 	from	 downstream.	 On	 the	 left	 of	 the	

Figure	 5,	 interface	 	places	 the	 slow-down	 request	 in	 the	 acknowledgement	

packets	arriving	from	downstream	node	 .	In	the	acknowledgement	packets,	 	

inserts	a	nonce,	which	is	effectively	an	alias	name,	i.e.,	fixed	length	bit	string,	for	
.	The	upstream	nodes	store	the	nonce	and	forward	the	packets	with	the	nonce	

further	upstream	towards	the	end-point.		
The	 acknowledgement	 packets	 eventually	 reach	 the	 sender-side	 TCP	 agent	
(that	is,	the	originator	of	the	corresponding	data	packet).	Once	the	TCP	agent	at	
the	 sender	 side	 observes	 the	 slow-down	 request	 in	 the	 ack	 packets,	 it	 starts	
placing	 the	 nonce	 in	 its	 outgoing	 data	 packets.	When	 a	 node	 receives	 a	 data	
packet	with	a	nonce,	it	compares	the	nonce	with	all	the	locally	stored	nonces.	In	
case	of	a	match,	the	packet	is	stored	in	the	cache	regardless	of	the	state	of	the	
interface	that	the	packet	is	to	be	forwarded	to.	An	upstream	node,	e.g.,	node	 	

in	 the	previous	example,	 sends	one	data	packet	with	nonce,	 for	each	arriving	
acknowledgement	packet	with	the	same	nonce.	This	effectively	slows-down	the	
flow	 of	 traffic	 going	 downstream	 to	 a	 backpressuring	 interface	 in	 the	
downstream	node.	Once	the	occupancy	of	 	's	cache	drops	below	 ,	interface	

	leaves	the	Backpressure	state	and	switches	to	Disable	Backpressure	state.	

• Disable	 Backpressure	 (DB):	 Before	 an	 interface	 	in	 a	 Backpressure	 state	 can	

switch	back	to	S&D,	 	first	enters	a	transition	state	named	Disable	Backpressure	

(DB).	 During	 this	 state,	 ’s	 interface	 	sends	 a	 “cancel”	 notice	 along	 with	 the	

nonce	corresponding	to	 	to	upstream	nodes	of	 	who	have	been	caching	traffic	

heading	downstream	to	 .	The	cancellation	notification	is	again	piggybacked	in	

the	acknowledgement	packets,	i.e.,	packets	arriving	to	 	from	downstream.	The	

upstream	 nodes	 of	 	receiving	 the	 cancellation	 notice,	 erase	 the	 nonce	 from	

their	 list	 of	 locally	 stored	 nonce	 list	 and	 stop	 caching	 packets	 heading	
downstream	to	 	which	carry	the	nonce.	The	DB	state	is	maintained	for	a	fixed	

duration,	 and	 the	 state	 is	 eventually	 changed	 to	 S&D.	 The	 duration	 is	 set	 to	
approximately	 a	 second	 in	 the	 implementation	 to	 ensure	 all	 or	 most	 of	 the	
upstream	(both	direct	and	indirect)	nodes	receive	the	cancellation	notification.	
However,	 as	 we	 explain	 in	 Section	 3.1,	 the	 state	maintained	 for	 each	 stored	
nonce	also	expires	after	a	duration	of	inactivity,	i.e.,	no	ack	arrivals	containing	
the	 nonce,	 to	 make	 sure	 nonces	 are	 erased.	 If	 during	 the	 DB	 state,	 the	

	

	

occupancy	of	 the	cache	exceeds	 the	upper-bound,	 then	 the	 interface	switches	
back	to	Backpressure	state.	

For	 the	 backpressure	 mechanism	 using	 piggybacked	 (slow-down,	 cancel)	 upstream	
notifications	 to	 work,	 INRPP	 flows	 require	 symmetric	 paths,	 where	 data	 and	 the	
corresponding	 ack	 packets	 traverse	 the	 same	 paths	 in	 the	 reverse	 direction.	 However,	
INRPPP	could	be	adjusted	to	work	without	symmetric	paths,	 if	the	data	packets	were	to	
be	 used	 for	 piggybacking	 notifications,	 instead	 of	 ack	 packets:	 the	 nonce	 and	 the	
notification	 would	 travel	 to	 the	 receivers	 in	 the	 tagged	 data	 packets	 and	 from	 the	
receivers	back	to	the	senders	in	the	ack	packets,	and	finally	the	senders	would	eventually	
place	the	nonce	and	the	instruction	in	their	next	data	packets.	This	change	would	add	an	
additional	RTT	for	the	routers	to	receive	the	notifications,	and	an	additional	mechanism	
would	be	needed	for	the	notifications	to	be	ignored	or	not	seen	by	the	downstream	nodes	
of	 the	 backpressuring	 interface.	 We	 leave	 a	 detailed	 investigation	 for	 the	 possible	
consequences	of	asymmetric	paths	for	future	work.	

An	 important	 consideration	 we	 discuss	 next	 is	 the	 extent	 to	 which	 the	 slow-down	
operation	 is	 propagated	 in	 the	upstream	nodes	of	 a	 backpressuring	node.	Triggered	by	
slow-down	notifications,	nodes	enter	 a	 closed-loop	mode	of	operation	and	 transfer	one	
data	packet	for	each	ack	received.	However,	the	closed-loop	operation	is	performed	hop-
by-hop,	and	initially	it	is	performed	only	between	the	immediate	up-	stream	node	and	the	
node	 with	 the	 backpressuring	 interface,	 e.g.,	 nodes	 	and	 	in	 Figure	 5.	 Extending	 the	

closed-loop	 operation	 to	 more	 than	 one-hop	 may	 be	 required	 if	 the	 upstream	 node’s	
cache	 is	 also	 nearly	 full.	 Next,	 we	 discuss	 how	 upstream	 nodes	 process	 notifications	
arriving	from	downstream.	

3.2 INRPP mechanisms
INRPP	requires	several	new	mechanisms	to	be	implemented	by	the	routers,	while	minor	
modifications	 are	 required	 for	 the	 TCP/IP	 agents	 at	 the	 end-points.	 In	 this	 section,	we	
provide	 implementation	 details	 of	 the	 several	 mechanisms	 comprising	 the	 In-Network	
Resource	 Pooling	 Protocol.	 We	 discuss	 how	 backpressure	 requests	 propagate	 and	 we	
explain	the	cache	storage	system.			Then,	we	discuss	computation	of	detour	paths	and	the	
computation/advertisement	of	 residual	bandwidth	on	detour	paths.	 	Finally,	we	discuss	
the	changes	required	at	the	TCP	agents	at	the	end-points.	

Processing of downstream requests
As	discussed	above,	arrival	of	a	slow-down	notification	to	a	node	 	from	the	downstream	

node	 	initiates	a	closed-loop	operation	between	 	and	 .	During	this	operation,	router	 	

caches	 packets	 carrying	 the	 nonce	—an	 alias	 name	 for	 the	 interface	 of	 a	 downstream	
node—	 received	 in	 the	 slow-down	 request.	 Router	 	sends	 one	 data	 packet	 from	 the	

cache	 for	 each	 ack	 packet	 with	 matching	 nonces.	 It	 is	 not	 clear,	 however,	 whether	 	

should	request	closed-loop	operation	from	its	own	upstream.	Our	proposal	is	for	 	to	not	

	

	

propagate	the	slow-down	request	further	upstream	as	long	as	 	has	sufficient	cache	space	

and	therefore,	flows	can	take	advantage	of	the	open-loop	operation	until	the	packets	hit	a	
bottleneck	node	with	nearly	full	cache.	

The	 pseudocode	 in	 Algorithm	 1	 shows	 the	 processing	 of	 ack	 packets	 at	 an	 interface.	
Depending	on	its	node’s	current	“mode	of	operation”,	the	interface	either	propagates	an	
incoming	 slow-down	 instruction	 up-stream	 or	 clears	 the	 notification	 field	 and	 only	
propagates	 the	 nonce	 to	 prevent	 the	 slow-down	 notification	 to	 propagate	 further.	
Remember	 that	 the	nonce	 in	 the	 ack	packets	 is	 needed	by	 the	 senders	 to	 tag	 its	 future	
packets,	and	therefore	it	is	kept	in	the	ack	packets	by	each	router.	Each	node	is	either	in	
CLEAR	(CLR)	or	PROPAGATE	(PR)	state	at	any	point	in	time	and	it	is	initially	set	to	CLR	at	
each	 router.	 If	 the	 router’s	 cache	 occupancy	 exceeds	 the	 upper-bound,	 the	 interface	
switches	to	PR	mode	(Line	3),	and	stays	in	this	mode	for	as	long	as	the	occupancy	of	the	
cache	 is	 above	 the	 lower-bound	 (see	 Algorithm	 1).	 In	 the	 PR	 mode,	 the	 slow-down	
notifications	are	propagated	upstream.	On	the	other	hand,	if	the	interface	is	in	CLR	mode,	
the	slow-down	notifications	are	cleared	from	the	ack	packets	(Line	11)	before	forwarding	
the	ack	upstream.	

The	 nonce,	 which	 comes	 along	 with	 the	 slow-down	 notification	 is	 added	 to	 the	 list	 of	
nonces	 stored	 by	 the	 router	 (Line	 8).	 Upon	 receiving	 an	 ack	 packet	 with	 slow-down	
notification,	the	interface	fetches	from	the	cache	a	data	packet,	which	belongs	to	the	same	
flow	as	the	ack	packet,	and	forwards	the	data	packet	(Line	13,	14).	If,	on	the	other	hand,	a	
nonce	with	a	cancel	notification	is	received,	the	nonce	is	removed	from	the	list	of	nonces	
stored	by	the	router	(Line	16).	In	addition	to	the	cancellation	mechanism,	nonces	are	kept	
in	 the	 router	 as	 a	 soft	 state,	which	means	 they	 eventually	 expire	 if	 the	 router	does	not	
receive	any	packets	containing	the	nonces	for	a	period	of	time.	In	Algorithm	1,	a	timer	is	
set	(or	reset)	to	expire	for	each	nonce	upon	receiving	a	slow-down	request	(Line	16)	to	
implement	soft	state.	

Cache storage system
INRPP	uses	in-network	storage	in	order	for	senders	to	push	as	much	data	as	possible	into	
the	network	and	deal	with	congestion	within	the	network	as	opposed	to	the	edges.	As	in	
any	 cache	 implementation,	 INRPP	 caches	maintain	 an	 indexed	 flow	 table	 and	 insert	 in-	
coming	packets	 in	 the	order	of	 arrival.	 This	way	we:	 i)	 efficiently	 retrieve	data	packets	
belonging	to	particular	flows	while	performing	ack	pacing,	ii)	forward	packets	ordered	by	
sequence	(of	arrival)	to	avoid	reordering	is-	sues	at	the	receiver2,	but	most	importantly,	
iii)	avoid	head	of	line	blocking	at	the	cache.	

INRPP	 caches	 are	 indexed	 by:	 i)	 the	 primary	 output	 interface,	 that	 is,	 not	 the	 detour	
interface,	 if	 any,	 and	 ii)	 the	 flow	 id.	 As	 flow	 id,	we	use	 the	 hash	 of	 the	 5-tuple	 <source	
address,	destination	address,	source	port,	destination	port,	protocol>.	

Outgoing	 interfaces	pull	packets	 from	the	cache	at	 the	rate	determined	by	the	 incoming	
rate	of	ack	packets	when	the	ack	packet	contains	slow-down	notification.		In	that	case,	the	

	

	

router	 fetches	 a	 data	 packet	 from	 the	 cache	 whose	 flow	 identifier	 matches	 the	 ack	
packets.	Next,	we	discuss	how	INRPP	nodes	discover	the	available	residual	bandwidth	on	
detour	paths.	

Detour path information
In	 INRPP,	 a	node	detours	 its	 traffic	 in	order	 to	 eliminate	 the	 excess	 traffic	 stored	 in	 its	
cache	 through	 alternative	 paths.	 In	 order	 to	 avoid	 severe	 detour	 delays	 and	 packet	
reordering,	nodes	refrain	from	using	already	congested	detour	paths	as	sending	traffic	to	
a	congested	interface	would	result	in	caching	of	the	detour	traffic	along	the	detour	path.	

Consider	 the	 example	 topology	 in	 Fig.	 3	 where	 a	 router	 	has	 a	 one-hop	 detour	 path	

through	 	to	 reach	 .	 When	 ’s	 interface	 facing	 	(labeled	 1)	 is	 congested,	 the	 interface	

switches	 to	 S&D	 mode.	 At	 this	 point,	 	starts	 caching	 excess	 data	 and	 starts	

demultiplexing	 packets	 between	 the	 primary	 outgoing	 interface	 and	 the	 detour	
interface(s)	as	shown	in	Fig.	3.	A	router	sends	cached	traffic	through	a	detour	path	only	if	
the	 path	 has	 residual,	 i.e.,	 unused,	 bandwidth	 to	 forward	 the	 traffic.	 A	 detour	 path	 has	
residual	 bandwidth	 if	 it	 operates	 in	 the	 Push	mode	 (see	 Section	 2).	 In	 the	 example	 of	
Figure	3,	 	uses	the	detour	path,	shown	with	the	dashed	 line,	only	 if	 interface	2	of	 	and	

interface	2	of	 	are	both	in	Push	mode.	

INRPP	 makes	 use	 of	 a	 simple	 link-state	 protocol	 in	 order	 to	 help	 nodes	 identify	 the	
neighbours	with	which	they	are	connected	through	a	1-hop	detour	path.	In	the	example	of	
Fig.	3,	node	 	determines	 that	 its	next-hop	neighbours	 	and	 	are	directly	connected	by	

examining	their	link	state	advertisements.	The	link-state	protocol	would	be	slightly	more	
complicated	 for	multi-	hop	detour	paths,	which	we	do	not	 cover	 in	 this	 report.	Routers	
then	periodically	advertise	the	residual	bandwidth	on	their	interfaces,	which	are	in	Push	
mode	to	their	immediate	neighbours.	

	

	

	
In	 order	 to	 make	 sure	 the	 detoured	 traffic	 eventually	 reaches	 the	 intended	 next-hop,	
routers	tag	their	detoured	packets	with	their	original	next-hop	IP	address.	For	example,	in	
the	previous	example	router	 	tags	its	detour	traffic	going	to	 	with	its	original	next	hop	

’s	 address	 as	 shown	 in	 Fig.	 3.	 Tagging	 the	 detour	 traffic	 is	 also	 useful	 in	 order	 to	
distinguish	detour	traffic	from	regular	traffic,	which	in	turn,	allows	routers	to	keep	track	
of	detour	traffic	per	neighbour	node.	

In	 the	previous	 example,	 	advertises	 the	 amount	 of	 residual	 capacity	 on	 the	 link	 of	 its	

interface	labelled	 	to	router	 ,	denoted	as	 .	Then,	 	knowing	the	residual	capacity	on	

its	own	interface	 ,	denoted	as ,	can	determine	the	residual	bandwidth	on	the	detour	

path	 from	 	as:	min(,).	 Upon	 computing	 its	 detour	 paths,	 each	 router	

forms	a	detour	interface	lookup	table	to	map	each	next-hop	interface	to	its	set	of	detour	
interfaces.	As	an	example,	router ’s	lookup	table	is	shown	in	Table	4,	where	interfaces	1	

and	2	detour	traffic	for	each	other	and	3	has	no	detour	interfaces.	

	

	

	

Primary	Outgoing	Interface Detour	Interface(s)

 2

 1

 Null

Table 4 - Detour interface lookup (router r)

One	complicating	factor	when	advertising	residual	bandwidth	of	a	link	is	when	the	link	is	
used	by	multiple	detour	paths.	As	an	example,	consider	the	topology	in	Fig.	6	where	four	
routers: ,	 ,	 ,	and	 	are	interconnected.	Routers	 	and	 	are	both	directly	connected	to	 	

with	direct	links,	and	they	both	have	a	1-hop	detour	path	through	 	to	reach	 	as	shown	

with	dashed	lines.	Router	 	on	the	other	hand,	has	two	detour	paths	to	reach	 :	 	

and .	

Routers	iteratively	revise	the	amount	of	bandwidth	advertised	to	each	neighbor	to	reach	
an	approximately	fair	allocation	of	bandwidth	resources	between	the	detour	paths.	Based	
on	 information	 from	 the	 link-state	 protocol	 discussed	 above,	 router	 	discovers	 that	 its	

link	 to	 	is	 shared	 by	 detour	 traffic	 from	 	and	 	heading	 to	 	shown	 as	 dashed	 lines	 in	

Figure	6.	The	residual	bandwidth	 	on	the	interface	 	of	a	node	 	is	computed	simply	as	

,	where	 is	 the	bandwidth	 capacity	 and	 is	 the	 amount	of	 total	

traffic	flowing	through	interface	 .	

Figure 6 - Detour Example: The routers q and r use detour paths through router p to reach s as shown with the dashed lines

Instead	of	simply	splitting	the	residual	capacity	between	nodes	 	and	 ,	router	 	allocates	

the	 residual	bandwidth	of	 interface	2,	 ,	 	 to	nodes	 	and	 	in	a	max-min	 fair	manner.	

	

	

We	use	a	 slightly	modified	version	of	 the	original	max-min	 fairness	algorithm,	which	 is	
based	on	the	actually	used	traffic	by	each	of	the	neighbour	routers.	The	ultimate	purpose	
is	to	avoid	underutilising	the	residual	capacity	available	through	node ,	e.g.,	in	case	 	has	

lower	demand	than	advertised	by	 	and	 	has	higher	demand	(or	vice	versa).	This	is	done	

through	 monitoring	 of	 the	 incoming	 traffic	 from	 both	 nodes	 	and	 	and	 adjusting	 the	

advertised	residual	bandwidth	accordingly.	

The	 detailed	 steps	 for	 this	 operation	 are	 given	 in	 Algorithm	 2.	 In	 this	 operation,	 it	 is	
essential	for	router	 	to	be	able	to	distinguish	between	regular	and	detour	traffic.	In	our	

case,	this	is	done	through	the	packet	tags	attached	to	detour	packets,	as	discussed	earlier.	
Router		 ,	having	two	detour	paths	using	its	link	on	interface	2,	can	simply	advertise	 ,	

but	 this	 could	 lead	 to	 receiving	 more	 detour	 traffic	 than	 the	 residual	 bandwidth.	
Alternatively,	 router	 	can	 share	 the	 residual	 bandwidth	 equally	 by	 advertising	 half	 of	

	to	 both	 neighbours.	 However,	 the	 problem	 in	 this	 case	 is	 the	 possibility	 of	

underutilising	 the	 residual	 resources	 since	 	may	 have	 less	 than	 to	 send,	 while	 	

might	 have	 higher	 demand	 than	 .	 In	 order	 to	 compute	 an	 approximately	 fair	

allocation,	each	router	monitors	the	amount	of	detour	traffic	sent	from	each	neighbour	to	
observe	if	the	neighbour	is	using	the	advertised	amount.	This	requires	routers	to	be	able	
to	distinguish	detour	traffic	 from	other	 traffic,	and	they	do	by	checking	the	packet	 for	a	
tag;	as	explained	above,	routers	tag	their	detour	traffic	with	the	address	of	the	next-hop.	
The	computation	of	the	advertised	residual	bandwidth	amount	sent	to	a	node	 ,	when	 	

nodes	are	competing	for	the	residual	bandwidth	is	given	in	Algorithm	2.	Advertisements	
are	 sent	 periodically	 in	 the	 time-scales	 of	 milliseconds,	 and	 each	 subsequent	
advertisement	revises	the	bandwidth	advertised	to	each	node	to	reach	an	approximately	
fair	allocation.	Initially,	a	router	advertises	an	equal	share	of	the	unused	bandwidth	on	its	
link	 to	 all	 neighbors,	 which	 potentially	 use	 the	 link	 for	 detouring	 traffic.	 Then,	 after	
observing	the	moving	average	of	the	actual	traffic	sent	until	the	next	iteration,	the	router	
advertises	 an	 amount	 based	 on	 the	 actual	 used	 amount.	 In	 particular,	 each	 router	 is	
advertised	an	amount	equal	to	the	actual	amount	of	traffic	it	sent	plus	an	equal	share	of	
the	current	residual	bandwidth	(Line	8).	 If	 there	 is	no	residual	bandwidth	available,	 the	
router	 advertises	 an	 equal	 share	 of	 the	 total	 bandwidth	 used	 by	 all	 the	 detour	 traffic,	
which	is	computed	in	Lines	3-	5.	

	

	

INRPP sender/receiver
In	order	to	comply	with	the	above-mentioned	mechanisms,	we	use	a	modified,	rate-based	
version	of	TCP.	Our	resulting	INRPP	end-point	client	complies	with	the	feedback	signals	
received	 from	 notifications	 (e.g.,	 slow-down)	 in	 the	 ACK	 packets,	 as	 presented	 in	
Algorithm	 1.	 The	 fast-recovery	 mechanism	 at	 the	 sender	 is	 disabled;	 however,	 the	
timeout-based	retransmission	mechanism	is	kept:	even	though	INRPP	routers	no	longer	
experience	 congestion-related	 packet	 drops,	 as	 opposed	 to	 end-to-end	 congestion	
protocols,	 packets	 need	 to	 be	 re-	 transmitted	 in	 the	 case	 of	 packet	 corruption	 due	 to	
channel	interference.	

The	 INRPP	 sender	 initially	 works	 in	 an	 open-loop	 manner	 and	 forwards	 packets	
according	to	processor	sharing.	When	the	INRPP	sender	receives	a	nonce	within	an	ACK	
packet,	it	stores	the	nonce	and	copies	it	to	the	future	data	packets	of	this	flow.	The	nonces	
as	well	as	the	slow-down	and	cancel	notifications	are	stored	within	INRPP’s	packet	option	
fields.	When	an	INRPP	sender	receives	a	slow-down	request,	it	adapts	the	sending	rate	of	
the	specific	flow	to	the	rate	of	acknowledgement	packets	(i.e.,	closed	loop	operation	based	
on	the	“one-out,	one-in”	principle).	On	the	other	hand,	when	an	INRPP	sender	receives	a	
“cancel”	 notification	 through	 an	 ACK	 packet,	 it	 switches	 back	 to	 open-loop	 mode	 and	
sends	again	at	the	maximum	possible	rate	available	through	its	outgoing	interface.	

The	 INRPP	 receiver	 does	 not	 require	 any	 modifications	 compared	 to	 a	 standard	 TCP	
receiver.	It	is	worth	noting,	however,	that	INRPP	receivers	might	see	out-of-order	packets,	
due	to	reordering.	Although	reordering	might	happen	due	to	detouring	of	some	parts	of	
the	flow,	detour	paths	add	very	small	extra	delays	(in	the	order	of	a	few	milliseconds	in	
our	extensive	evaluation),	given	they	are	only	1-hop	detours.	Also,	note	that	INRPP	avoids	
packet	loss	and	lengthy	retransmissions,	which	normally	add	substantial	delay	and	cause	

	

	

Head-of-Line	 (HoL)	 blocking.	 That	 said,	 reordering	 in	 our	 case	 differs	 from	 the	 more	
complicated	cases	where	reordered	packets	experience	substantially	longer	delays.	

3.3 INRPP results
We	 next	 engage	 in	 a	 detailed	 investigation	 of	 the	 performance	 of	 the	 proposed	 INRPP	
scheme	 in	 an	 infrastructure	 scenario.	 In	 the	 following	 sections,	 we	 compare	 the	
performance	of	 INRPP	with	TCP,	RCP,	and	MPTCP	 for	various	 topologies	and	scenarios.	
We	implemented	INRPP	in	ns-3	[15],	ported	the	existing	ns-2	implementation	of	MPTCP	
to	 ns-3	 and	 used	 RCP's	 existing	 implementation	 for	 ns-3	 [16].	 We	 use	 the	 New	 Reno	
version	of	TCP.	

We	evaluated	INRPP	in	a	three	different	scenarios.	The	first	one	is	a	very	simple	topology	
(dumbbell	 topology),	 in	 order	 to	 show	 in	 detail	 the	 operation	 of	 the	 different	 INRPP	
mechanisms	detailed	in	Section	2.2.	The	second	scenario	is	a	simple	multihomed	scenario	
where	we	 can	 compare	 INRPP	with	 not	 only	 singlehomed	 transport	 protocols,	 such	 as	
TCP	 and	 RCP,	 but	 also	 multihomed	 transport	 protocols,	 such	 as	 MPTCP	 transport	
protocol.	 The	 third	 scenario,	 is	 a	 more	 complex	 hierarchical	 scenario,	 where	 we	 can	
evaluate	 INRPP	 performance	 in	 a	 similar	 scenario	 that	 can	 be	 used	 for	 the	 service	
placement	 UMOBILE	module	 (introduced	 in	 D3.3,	 Section	 4.4),	 where	 communications	
take	place	in	the	Internet	domain	between	central	servers	and	service	instances	placed	in	
the	edge	of	the	network.		

Dumbbell topology with a detour path
We	first	evaluate	a	simple	scenario	using	a	dumbbell	topology	with	a	fully-connected	core	
component	(nodes	0,	1,	and	2),	depicted	in	Figure	7.	The	purpose	is	to	show	in	detail	the	
operation	 of	 the	 different	 INRPP	 mechanisms	 in	 a	 simple	 setup.	 This	 topology	 has	 a	
bottleneck	link	(link	0-2)	with	10Mbps	capacity,	but	it	also	has	another	10Mbps	capacity	
one-hop	detour	path	(link	0-1-2)	 that	can	be	used	 to	extend	 the	bandwidth	available	at	
the	bottleneck.	Hosts	have	 access	 links	with	40Mbps	bandwidth	 capacity,	 and	 links	4-0	
and	2-3	have	more	capacity	than	the	rest	of	the	links.	We	pair	the	senders	(three	hosts	on	
the	 left)	 and	 the	 receivers	 (three	hosts	 on	 the	 right),	 and	 each	 sender	 initiates	 a	 single	
flow	to	its	receiver	pair.	The	three	flows	from	the	senders	are	initiated	with	one	second	
gap	in	between.	Each	flow	has	the	same	size	of	10	MB,	and	the	size	of	each	router	cache	is	
set	 to	 only	 1.25	 MB	 in	 order	 to	 demonstrate	 the	 activation	 of	 the	 backpressure	
mechanism,	which	eventually	propagates	 to	 the	 sender.	 is	 set	 to	1	MB	and	 to	

500	KB.	We	set	the	packet	size	to	1500	bytes.	Router	interfaces	buffer	size	is	set	to	50	ms	

[17]	worth	of	traffic	using	Drop	Tail	and	link	latencies	are	5	ms.	In	case	of	INRPP	the	
is	set	40	ms	and	the	 is	set	to	20	ms.	We	simulated	the	scenario	using	INRPP,	RCP	and	

TCP.	 In	 this	 scenario,	 we	 do	 not	 evaluate	 MPTCP	 since	 no	 hosts	 are	 multihomed,	 and	
therefore	there	is	no	possibility	of	establishing	multiple	sub-flows	between	peers.	

	

	

	
Figure 7 - Detour simple scenario

Protocol AFCT Fairness
Fairness	

different	RTTs

INRPP 10.50s 0.9945 0.9972

RCP 25.96s 0.9934 0.9994

TCP 19.08s 0.8902 0.8321

Table 5- Dumbbell topology simulation results

In	Table	5,	we	 can	observe	 the	 average	 flow	completion	 time	 (AFCT)	 [18].	We	 see	 that	
INRPP	can	complete	the	flows	much	faster	than	TCP	and	RCP,	because	INRPP	is	using	all	
the	 bandwidth	 available	 in	 the	 bottleneck,	 plus	 the	 bandwidth	 available	 in	 the	 detour	
path,	 when	 TCP	 and	 RCP	 is	 only	 using	 the	 bottleneck	 link	 capacity.	 In	 Figure	 8,	 we	
demonstrate	the	goodput	at	the	receiver	in	bps.	With	INRPP	(top	figure),	we	observe	that	
the	bandwidth	 is	 shared	 equally	 between	 the	 existing	 flows	 and	 there	 is	 no	 fluctuation	
when	a	new	flow	arrives.	Particularly,	the	first	flow	starts	at	second	1	and	is	transmitted	
at	20Mbps	using	both	 the	bottleneck	 link	 and	 the	detour	path	 shown	with	 an	 arrow	 in	
Figure	 7.	When	 the	 second	 flow	 starts	 at	 second	 2,	 the	 capacity	 is	 immediately	 shared	
between	 the	 two	 active	 flows	 (10Mbps	 each),	 while	 when	 the	 third	 flow	 starts	 at	 3	
seconds	 the	available	bandwidth	 is	 immediately	 split	between	 the	 three	active	 flows	 (≈	
6.66	Mbps	per	flow).	When	flows	start	completing,	the	existing	flows	adapt	their	rate	and	
share	the	bandwidth	no	longer	used	by	the	completed	flow.	With	TCP	(bottom	figure),	on	
the	other	hand,	we	can	observe	that	the	goodput	at	the	receiver	is	erratic	and	fluctuates	
excessively.	 TCP	 shares	 the	 bandwidth	 equally;	 however,	 it	 needs	 time	 to	 adapt	 to	 the	
new	 flow	 arrivals.	 Even	 after	 all	 the	 flows	 begin,	 the	 goodput	 oscillates	 continuously	
throughout	 the	simulation	due	 to	 the	saw-tooth	behaviour	of	 the	congestion	window	of	
TCP.	In	contrast,	RCP	does	not	have	such	oscillation	in	goodput,	but	we	see	that	RCP	also	
requires	time	to	adapt	and	share	the	bandwidth	between	flows	efficiently.	In	this	simple	
scenario,	 RCP's	 slow	 adaptation	 to	 arriving	 flows	 is	more	pronounced	due	 to	 the	 small	

	

	

number	 of	 flows:	RCP	 shares	 the	 bandwidth	 among	 flows	by	 estimating	 the	 number	 of	
active	flows,	and	when	the	number	of	active	flows	is	small,	this	estimation	is	less	accurate;	
that	is,	the	error	rate	is	higher	when	the	estimation	is,	for	instance,	off	by	one.	The	slow	
adaptation	of	RCP	to	arriving	flows	leads	to	worse	AFCT	than	TCP	in	this	scenario.	

	

Figure 8 - Receiver goodput

In	 Table	 5,	 we	 can	 also	 observe	 the	 fairness	 during	 the	 simulation.	 To	 measure	 the	
fairness,	we	first	compute	the	Jain's	index	[19]	on	the	instantaneous	throughput	of	flows,	
sampled	every	10	ms	throughout	the	simulation,	and	then	take	the	average	of	the	samples	
to	 obtain	 a	 single	 average	 fairness	 value,	 shown	 in	 the	 third	 column.	 In	 order	 to	
demonstrate	 that	 INRPP	 is	 not	 affected	 by	 diverse	 RTT	 paths	 [20],	 we	 also	 evaluated	
fairness	for	heterogeneous	access	link	latencies:	50,	100	and	200	ms.	With	homogeneous	
RTTs,	we	observe	that	INRPP	and	RCP	fairness	is	close	to	the	optimal	with	TCP	having	the	
worst	fairness	because	of	throughput	oscillations.	With	heterogeneous	RTTs,	on	the	other	
hand,	we	observe	that	TCP	fairness	becomes	even	worse,	while	INRPP	and	RCP	fairness	is	
maintained	 close	 to	 1,	 given	 their	 rate-based	 transmission	 pattern.	 In	 Figure	 9,	we	 can	
observe	 the	cache	occupancy,	data	 input	and	output	rates	of	nodes	0	and	4.	The	output	
data	rate	at	node	0	is	constant	and	equal	to	the	capacity	of	the	bottleneck	link	(0-2)	plus	
the	 detour	 path	 capacity	 (bps),	 when	 the	 interface	 of	 node	 0	 facing	 node	 2	

switches	 to	 Store	 &	 Detour	 (S&D)	 state	 from	 the	 initial	 Push	 (P)	 state,	 which	 happens	
shortly	 after	 the	 first	 flow	 starts.	 The	 input	 rate	 of	 node	4	 initially	 decreases	 gradually	
when	the	senders	of	the	first	and	the	second	flow	complete	their	transmission,	marked	in	
the	bottom	plot	with	“Flow	1	 transmitted"	and	“Flow	2	 transmitted",	 respectively.	After	
this	point,	 only	 the	 sender	of	 flow	3	 is	 still	 transmitting,	 and	around	 time	5s,	 the	 cache	

	

	

occupancy	 exceeds	 the	 upper-bound,	 which	 causes	 node	 4	 to	 send	 a	 slow-down	
notification	to	the	sender	of	flow	3.	This	causes	the	sender	of	flow	3	to	enter	closed-loop	
(CL)	mode	of	operation,	and	therefore,	slow-down	around	time	5s	as	shown	in	the	bottom	
plot	 of	 the	 figure	with	 the	marker	 “CL	 flow	3".	During	 CL,	 the	 incoming	 rate	 of	 node	 4	
reduces	to	the	rate	at	which	the	packets	of	flow	3	leave	the	cache	of	the	bottleneck	node	2,	
i.e.,	20Mbps/3	≈	6.66	Mbps,	since	the	cache	in	node	0	contains	data	from	all	sources	and	
shares	its	bandwidth	equally	among	the	flows.	Later	when	the	occupancy	of	the	cache	at	
node	4	drops	below	the	lower-bound,	it	cancels	the	slow-down	notification	at	the	sender	
so	 it	can	send	 in	open-loop	(OL)	mode	again.	However,	at	 this	point	 flow	3	has	no	more	
data	to	send,	so	we	do	not	observe	an	increase	in	the	rate	of	flow	3.	

	
Figure 9 - Cache occupancy and data input/output rates (node 0 - top, node 4 - bottom)

In	Figure	10	we	depict	 the	sequence	number	of	 the	segments	 flowing	 through	different	
locations	 of	 the	 network	 for	 a	 single	 flow.	 The	 first	 plot	 of	 the	 figure	 is	 the	 sequence	
number	of	the	segments	leaving	the	sender,	where	we	observe	how	differently	a	flow	is	
transmitted	from	an	INRPP	sender	compared	to	TCP	or	RCP	senders.	In	particular,	in	only	
2	 seconds	 the	 INRPP	 sender	 transmits	 the	 entire	 flow	 data	 of	 10	MB	 at	 the	 rate	 of	 40	
Mbps.	TCP	and	RCP	senders	are	inserting	data	into	the	network	in	a	closed-loop	manner	
and	 are	 therefore	 transmitting	 for	 the	whole	 duration	 of	 the	 flow,	 irrespectively	 of	 the	
available	resources	in	the	network.	The	second	plot	in	the	figure	is	the	sequence	number	
of	 the	 segments	 that	are	arriving	at	 the	cache	of	node	4.	Here	we	can	see	 that	only	 the	
second	half	of	the	flow	is	cached	in	node	4;	node	4	starts	caching	packets	when	it	receives	
a	 slow-down	 request	 from	 node	 0,	 which	 happens	 later	 (at	 3.04s)	 after	 transmitting	
approximately	 half	 of	 the	 flow's	 data	 without	 caching.	 The	 third	 plot	 is	 the	 sequence	
number	of	the	segments	that	are	cached	in	node	0.	In	the	beginning,	the	flow	is	cached	at	a	
higher	 rate,	 i.e.,	 slope	 is	 steeper	 in	 the	 third	 plot	 until	 time	 3.04s,	 because	 node	 0	 is	

	

	

caching	packets,	but	it	is	not	in	Backpressure	state,	and	therefore	the	previous	node	(node	
4)	is	transmitting	at	full	rate.	The	bottom	plot	shows	the	sequence	of	segments	arriving	at	
the	 receiver	host.	At	 time	3.04s,	node	0	gets	 into	Backpressure	 state	and	 sends	a	 slow-
down	message	to	node	4.	Node	0	implicitly	performs	ACK	pacing	as	it	sends	ACKs	at	the	
rate	 of	 the	 bottleneck	 link	 (10Mbps).	 At	 this	 point	 node	 4	 gets	 into	 closed-loop	mode,	
starts	caching	incoming	packets	and	sends	one	data	packet	for	every	ACK	received.	Node	
4's	output	rate,	i.e.,	the	input	rate	of	node	0	shown	in	the	third	plot,	quickly	becomes	equal	
to	 the	 rate	 at	 which	 the	 receiver	 host	 receives	 the	 flow.	 This	 can	 be	 observed	 by	 the	
similarity	of	the	slopes	in	plot	3	after	time	3.04	with	the	slope	of	plot	4	after	that	time.	

	
Figure 10 - Flows sequence number transmission

Figure	11	shows	the	Total	Cache	occupancy,	as	well	as	the	contribution	of	each	flow	to	the	
cache	 at	 node	 0	 (top)	 and	 node	 4	 (bottom).	 In	 this	 figure,	 we	 can	 observe	 that	 the	
allocation	rate	at	 the	cache	by	each	 flow	(sections	of	 the	 flow	plots	with	positive	slope)	
and	the	 flushing	rate	of	 the	data	belonging	 to	each	 flow	(sections	of	 the	 flow	plots	with	
negative	slope)	is	the	same.	The	latter	demonstrates	that	INRPP	is	fair	because	all	flows	
are	transmitted	at	the	same	rate.	The	top	plot	shows	the	state	of	node	0's	interface	(facing	
node	 2)	 along	 with	 the	 cache	 occupancy.	 When	 the	 interface	 is	 backpressuring	 the	
previous	node	(node	4),	the	cache	size	is	maintained	in	the	upper-bound	since	the	caching	
and	the	 flushing	rate	 is	 the	same.	The	gradient	 in	 the	slope	of	 the	cache	occupancy	of	a	
flow	 increases	 as	 other	 flows	 complete.	 For	 example,	 the	 cache	 occupancy	 by	 flow	 3	
increases	when	flow	2	completes	at	time	≈	8s	in	the	top	plot.	The	second	plot	in	the	figure	
shows	 the	 cache	 occupancy	 at	 node	 4	 after	 various	 events.	 Caching	 at	 node	 4	 starts	 at	
3.04s	when	the	node	receives	the	slow-down	message	from	node	0	and	gets	into	closed-

	

	

loop	operation.	At	time	≈	4s,	the	arrival	rate	of	flow	2	becomes	0	and	the	same	happens	
later	around	time	≈	5s	for	the	flow	3.	

	

Figure 11 - INRPP cache occupancy

In	 Figure	 12,	 we	 present	 the	 CDF	 of	 the	 packet	 interarrival	 times	 at	 the	 receiver	
application	to	examine	the	possible	impact	of	packet	reordering.	We	observe	that	INRPP	
interarrival	time	is	constant	between	1	and	4	ms,	while	some	TCP	packets	are	transmitted	
to	the	receiver	with	a	delay	up	to	≈	70	ms	caused	by	drops	and	timeouts.	This	means	that	
reordering	 in	 INRPP	 does	 not	 have	 severe	 impact	 as	 packets	 arrive	 without	 huge	
interarrival	time	gaps.	Since	there	are	no	retransmissions	due	to	losses	in	INRPP,	the	only	
cause	 of	 reordering	 is	 detouring	 of	 packets.	 However,	 even	 with	 detouring	 INRPP	
interarrival	 time	 is	bounded	and	constant.	This	 is	because	 INRPP	utilises	a	detour	path	
only	when	there	is	no	congestion	on	the	detour	path.	

	

	

Figure 12 – CDF of packet interarrival times at the receiver

Multihomed topology
In	this	second	scenario,	we	aim	at	evaluating	INRPP	in	a	multihomed	scenario	where	we	
can	compare	it	with	a	multipath	transport	protocols,	such	as	MPTCP.	MPTCP	can	exploit	
more	than	one	path	and	establish	multiple	sub-flows	to	take	advantage	of	available	sub-
paths.	 It	 is,	 however,	 constrained	 to	 end-host	 multihoming	 and	 can	 therefore,	 take	
advantage	of	e2e	paths	only.	We	evaluate	the	scenario	depicted	in	Figure	13	where	two	
paths	can	be	used	in	parallel	when	using	MPTCP	(link	0-1	and	link	2-1).	MPTCP	senders	
are	multihomed	and	are	connected	 to	node	0	and	2	at	 the	same	time,	while	 the	MPTCP	
receivers	 are	 singlehomed	 and	 connected	 to	 node	 1.	 MPTCP	 users	 establish	 two	 sub-
flows,	one	for	each	pair	of	source,	destination	IP	addresses.	In	addition,	we	also	evaluate	
INRPP/TCP/RCP	connecting	the	senders	to	node	0	and	the	receivers	to	node	1	only.	This	
way,	TCP	and	RCP	will	use	only	the	path	across	link	0-1	(the	shortest	path)	and	INRPP	will	
use	this	path	as	the	main	option,	but	will	also	be	able	to	use	the	detour	paths	0-3-1	and	0-
2-1.	The	network	parameters	are	the	same	as	in	Section	4.1,	however,	here,	we	increase	
the	cache	size	()	to	12.5MB	(size	proportional	to	the	link	bandwidth	equivalent	to	10	

seconds	of	traffic);	the	end-points	have	100	Mbps	links.	

	

	

	

	

	

Figure 13 - Multihomed topology scenario

We	evaluated	 this	 scenario	using	 a	Poisson	Pareto	Burst	Process	 (PBPP)	 [21]	 to	model	
Internet	traffic.	We	used	1000	flows	with	poisson	arrivals	with	a	 	rate	determined	by	the	

offered	load	of	the	network	 ,	where	 	(is	the	average	flow	size	and	 	

the	capacity	of	the	link),	that	we	set	to	0.9.	Flow	sizes	are	pareto	distributed	with	shape	
equal	 to	 1.2.	 Note	 that	 this	 scenario	 is	 beneficial	 for	MPTCP	 because	 it	 is	 a	 symmetric	
scenario.	MPTCP	behaviour	can	be	worse	when	using	highly	asymmetric	paths	(in	terms	
of	bandwidth	or	latency)	(such	as	3G	and	WiFi)	because	of	issues	caused	by	disordering	
[22,	 23].	 In	 some	 of	 the	 simulations	we	 also	 added	 cross-traffic	 in	 the	 link	 0-1.	 Cross-
traffic	 is	 added	 through	 UDP	 flows	 that	 come	 in	 every	 15	 secs,	 consume	 half	 of	 the	
bandwidth	(5Mbps)	for	5	secs	and	then	leave.	
	

a) AFCT for E[L] = 30

	

	

b) AFCT for E[L] = 500

Figure 14 - Multihomed AFCT w/o cross traffic

Fig.	14	shows	the	AFCT	for	different	flow	sizes	when	there	is	no	cross-traffic	in	any	of	the	
links.	 We	 present	 the	 AFCT	 for	 all	 protocols	 using	 ,	 and	 the	 same	 results	

showing	only	MPTCP	and	INRPP	at	different	scale.	In	Fig.	14(b),	we	present	results	using	
,	 but	 only	 comparing	MPTCP	 and	 INRPP.	 In	 Fig.	 14(a),	 we	 observe	 that	 the	

AFCT	of	both	MPTCP	and	INRPP	are	much	lower	than	TCP	or	RCP.	In	this	case,	TCP	does	
not	differ	significantly	from	RCP	since	we	have	a	larger	number	of	flows	in	the	simulation	
and	RCP's	estimation	of	number	of	active	flows	is	more	accurate.	However,	for	long	flows	
RCP	does	not	outperform	TCP	because	the	number	of	active	flows	is	still	not	large	enough	
for	RCP	to	reduce	its	error	rate	in	estimating	the	number	of	active	flows.	

The	performance	of	RCP	and	TCP	is	substantially	inferior	compared	to	MPTCP	and	INRPP,	
because	neither	RCP	nor	TCP	can	use	more	than	one	path	to	send	data.	When	comparing	
only	MPTCP	 and	 INRPP	we	 can	 see	 that	 INRPP	 clearly	 outperforms	MPTCP,	 providing	
shorter	flow	completion	times	(up	to	around	50%	in	some	cases),	and	therefore	using	the	
network	resources	more	efficiently	than	MPTCP.	First	of	all,	MPTCP	is	not	able	to	use	all	
the	detour	paths	available.	MPTCP	can	use	more	resources	than	TCP,	but	at	the	same	time	
it	 also	 inherits	 its	 limitations:	 First	 of	 all,	 MPTCP	 is	 an	 end-to-end	 resource	 pooling	
mechanism,	 and	 therefore,	 cannot	 exploit	 mid-path	 resources	 as	 INRPP	 does	 with	 the	
residual	bandwidth	available	 in	detour	paths.	Secondly,	AIMD-based	MPTCP	faces	drops	
and	 timeouts,	 that	most	of	 the	 time	does	not	 imply	 a	 significant	 increase	 in	AFCTs,	 but	
mainly	 causes	poorer	 fairness	performance	 -	 see	Table	6.	 In	 fact,	 the	 chances	of	packet	
drop	 and	 timeouts	 in	 MPTCP	 increases	 linearly	 with	 the	 number	 of	 sub-flows.	 This	 is	
shown	 by	 the	 substantially	 worse	 fairness	 performance	 in	 case	 of	 short	 flows	 (see	

in	Table	6).	

	

	

	
a) AFCT for E[L] = 30

	
b) AFCT for E[L] = 500

Figure 15 - Multihomed AFCT with cross-traffic in link 0-1

	

Fig.	15	shows	the	AFCT,	but	this	time	with	the	cross-traffic	pattern	previously	explained.	
In	Fig.	15(a),	we	present	the	AFCT	for	all	protocols	using	 and	in	Fig.	15(b),	we	

provide	 results	 using	 	for	MPTCP	and	 INRPP	only.	 In	 this	 figure,	we	observe	

again	 that	 INRPP	 significantly	 outperforms	 all	 other	 protocols.	 In	 this	 case,	 the	 flow	
completion	time	of	RCP	and	TCP	clearly	gets	worse	due	to	the	cross-	traffic.	However,	the	
AFCT	 increment	 because	 of	 the	 cross-traffic,	 using	 MPTCP	 or	 INRPP,	 is	 almost	

	

	

imperceptible	 compared	 with	 RCP	 and	 TCP.	 When	 using	 RCP	 or	 TCP,	 the	 cross-traffic	
generates	more	 load	 than	 the	 link	 can	 absorb.	However,	when	 using	MPTCP	 or	 INRPP,	
alternative	path(s)	 (which	do	not	use	 link	0-1)	can	be	used	 to	 forward	 traffic	 in	excess.	
Therefore,	the	multipath	capability	diminishes	the	impact	of	cross-traffic	on	AFCT.	

In	Table	6,	we	show	the	average	fairness	for	the	previous	simulation.	In	all	cases,	INRPP	
presents	 the	 best	 performance,	 except	 for	 ,	 where	 RCP	 provides	 only	

marginally	better	fairness	than	INRPP.	

Protocol
No	cross-traffic With	cross	traffic

TCP 0.8205 0.8575 0.4321 0.8883

RCP 0.9301 0.9589 0.7569 0.9959

MPTCP 0.6103 0.8947 0.6104 0.8515

INRPP 0.9298 0.9895 0.8225 0.9897

Table 6 – Average fairness using random flow sized in the multihomed topology

Hierarchical topology
In	this	last	scenario,	we	evaluate	INRPP	in	a	network	with	transit-stub	hierarchy,	where	
different	sets	of	users	are	clustered	in	the	edges,	and	edges	connect	each	other	through	a	
highly	 connected	 core.	 Different	 edge	 nodes	 (E)	 in	 Fig.	 16,	 are	 connected	 to	 a	 transit	
network	 consisting	 of	 core	 (C)	 routers.	 Some	 of	 the	 edge	 nodes	 in	 the	 topology	 are	
interconnected	to	other	edge	nodes	to	form	a	small	stub	network.	All	 the	 links	have	the	
same	capacity	of	10	Mbps	except	the	links	connecting	the	edge	nodes	of	the	servers	to	the	
core	 nodes,	 which	 have	 100	 Mbps	 capacity.	 In	 this	 scenario,	 we	 can	 have	 multiple	
bottlenecks	 and	multiple	 detour	 paths	 in	 the	 network.	More	 importantly,	 this	 scenario	
presents	 a	 more	 challenging	 environment	 for	 INRPP	 because	 the	 traffic	 flowing	 on	
shortest	paths	occupy	all	the	links	in	the	topology	as	opposed	to	previous	two	scenarios	
where	 the	detour	paths	were	exclusively	used	by	detour	 traffic.	Here,	we	only	compare	
INRPP	against	RCP,	TCP,	and	not	MPTCP	since	there	are	no	multihomed	users.	

	

	

Figure 16 – Hierarchical topology scenario

Each	group	of	senders	(top	of	the	figure)	connected	to	a	single	edge	node	consists	of	3000	
hosts,	 and	 each	 group	 of	 receivers	 (left,	 right	 and	bottom	of	 the	 figure)	 connected	 to	 a	
single	edge	node	consists	of	1000	hosts.	We	randomly	pair	each	sender	with	a	receiver	
and	start	a	 flow	from	each	sender	to	 its	pair,	which	makes	a	total	of	6000	flows.	 In	this	
scenario,	we	 start	 these	 6000	 flows	with	 an	 offered	 load	 of	 the	 access	 link	 	and	

.	

In	 Figure	 17,	 we	 show	 the	 AFCT	 for	 varying	 flow	 sizes,	 using	 the	 same	 PBPP	 process,	
described	in	Section	4.2.	We	observe	that	even	in	this	challenging	scenario,	INRPP	clearly	
outperforms	 RCP	 (by	 at	 least	 50%)	 and	 TCP	 (by	 more	 than	 100%)	 in	 terms	 of	 flow	
completion	 time.	 It	 does	 so	 because	 INRPP	 can	 take	 advantage	 of	 available	 residual	
bandwidth	 even	when	 it	 is	 available	 for	 very	 short	 time	 intervals,	 e.g.,	milliseconds,	 to	
detour	excess	traffic.	We	can	conclude	that	dealing	with	congestion	locally	using	INRPP	is	
better	than	the	e2e	congestion	control	used	by	RCP	and	TCP	given	that	the	topology	has	
detour	paths	(which	is	the	case	-	see	Table	1)	and	nodes	possess	caches.	

	

	

	

	

Figure 17 – AFCT for E[L] = 100 in the hierarchical topology scenario

4. INRPP over UMOBILE NDN networks

UMOBILE	 wireless	 Domain	 is	 expected	 to	 provide	 support	 for	 several	 scenarios	 with	
different	network	conditions,	such	as	urban,	remote	or	disaster	areas,	where	users	have	
specific	 applications	 and	 (maybe)	 infrastructure	 to	 allow	 communication	 among	 them,	
and	 such	 communication	 may	 follow	 a	 host-based	 (i.e.,	 towards	 a	 specific	 host)	 or	
content-based	(i.e.,	towards	different	interested	parties)	approach.	These	heterogeneous	
network	 conditions	 do	 not	 encourage	 an	 end-to-end	 transport	 solution,	 since	 it	 is	 very	
difficult	to	find	a	stable	end-to-end	path	between	two	peers	or	the	content	provider	and	
the	requester.	
This	way,	we	plan	to	build	a	hop-by-hop	congestion	control,	based	on	INRRP	using	NDN	
communications	to	be	used	in	the	UMOBILE	wireless	Domain.		In	this	section,	we	propose	
next	 steps	 to	 implement	 INRPP	 over	 NDN-based	 wireless	 networks	 and	 we	 identify	
possible	issues,	that	will	be	completed	in	D4.2	with	a	full	implementation.	
The	 central	 idea	 is	 to	 take	 advantage	 of	 the	 built-in	 abstractions	 (transparencies)	
provided	 by	 the	 ICN	 paradigm	which	 are	 fully	 supported	 by	 the	 NDN	 implementation.	
Examples	of	these	abstractions	are	named-based	routing,	in-network	caching,	decoupling	
of	 content	 from	 IP	 addresses,	 public/subscribe	 communication	 that	 decouples	 senders	
from	receivers,	multicast	communications,	data	mobility	and	data	replication.	

4.1 INRPP NDN design principles
As	a	 first	 step	 to	 implement	 INRPP	over	NDN,	we	assume	 Interest	packets	 and	Data	or	
Content	 chunks	 generated	 by	 receivers	 and	 senders,	 respectively.	 Data	 receivers	 will	
request	 data	 at	 the	 application	 rate,	 and	 for	 bulk	 data	 transfers	 an	 initial	 processor	
sharing	rate	will	have	to	be	set.		After	receiving	the	first	few	chunks	of	data,	the	receiver	
will	 continuously	adjust	 its	 requesting	rate	 to	 the	 incoming	data	rate.	 	Applications	will	

	

	

request	 for	 the	 immediate	 next	 chunk	 of	 data	 plus	 some	 anticipated	 data	 that	 the	
application	is	going	to	request	in	the	near	future.		

The	 format	of	 the	Request	Packets	will	be:	 ,	where	 is	 the	next	chunk	

requested	 by	 the	 application,	 is	 an	 acknowledgment	 for	 the	 latest	 chunk	 received	

and	 	is	the	number	of	the	last	anticipated	chunk.	 ,	similarly	to	the	initial	request	rate,	

is	also	a	constant	parameter	set	globally.	

Data	senders	should	keep	state	for	each	flow	(similar	to	TCP	senders)	and	operate	in	one	
of	two	modes.	In	the	push-data	mode,	the	objective	of	senders	is	to	send	as	much	data	as	
their	 outgoing	 links	 can	 carry	 according	 to	 the	 and	 values	 of	 the	 requests.	 In	 the	

back-pressure	mode,	data	senders	slow-down	their	sending	rate	and	enter	a	closed-loop	
mode	of	operation,	where	they	send	data	at	the	rate	with	which	they	receive	requests	(1-
to-1	flow	balance).		

Intermediate	 nodes	 should	 have	 two	 main	 functionalities	 routing/forwarding	 and	
caching.	 	 Nodes	 should	 forward	 data	 to	 their	 outgoing	 interfaces	 according	 to	 the	
interface’s	speed,	therefore	links	always	remain	fully	utilised.	Each	interface	of	the	router	
can	keep	track	of	the	requests	that	it	has	forwarded	upstream	(towards	the	source)	for	all	
other	 interfaces,	 per	 unit	 time.	 That	 is,	 each	 interface	 calculates	 the	 following	 ratio	 for	
each	of	the	rest	of	the	interfaces	of	the	router:		

	

where	 	is	 interface	 	 and	 	are	the	rest	of	the	interfaces.	 	According	to	this	value	each	

interface	 can	 know	 the	 amount	 of	 traffic	 that	 it	will	 receive	 for	 each	 of	 the	 rest	 of	 the	
interfaces	in	the	next	time	interval	 .		A	central	management	entity	would	need	to	collect	

all	 values	 from	 all	 interfaces	 and	 calculates	 the	 amounts	 of	 traffic	 that	 each	 of	 the	
interfaces	 will	 have	 to	 forward	 in	 the	 next	 .	 	 We	 call	 this	 value	 Anticipated	 Rate	 for	

Interface	 ,	 or	 and	 the	 actual	 rate	with	which	 interface	 	can	 forward	 traffic	 (i.e.,	 the	

link	capacity/speed)	 is	denoted	by	 .	 In	order	to	anticipate	congestion,	 in	NDN	we	can	

use	 	to	know	the	expected	 traffic	 in	an	 interface.	Each	 interface	can	be	 in	one	of	 the	

INRPP	 states,	 depending	 on	 the	 .	 If	 ,	 demand	 does	 not	 exceed	 supply	 and	

therefore,	the	link	can	deal	with	the	expected	amount	of	traffic,	the	node	is	in	Push	state.		
When	 or	 ,	 then	 demand	 is	 expected	 to	 exceed	 supply	 (within)	 and	

the	node	will	switch	to	Store	and	Detour	state,	and	afterwards	to	the	Backpressure	state,	if	
the	detour	phase	finds	that	there	is	no	alternative	path	to	forward	the	data	in	excess,	and	
finally	needs	to	transmit	to	the	upstream	node	the	slow-down	message.	

	

	

4.2 INRPP implementation identified issues
However,	implementing	INRPP	congestion	control	in	an	NDN	wireless	environment,	such	
as	 the	UMOBILE	 domain,	 presents	multiple	 issues.	 In	 the	 following	we	 briefly	 describe	
some	issues	that	we	identified	to	implement	INRPP	over	NDN	for	the	UMOBILE	wireless	
and	 we	 will	 need	 to	 further	 investigate	 in	 the	 final	 version	 of	 the	 flowlet	 congestion	
control	deliverable	(D4.2):	

• Push	services:		based	on	the	scenario	requirements,	UMOBILE	platform	requires	
both	 pull	 and	 push-based	 communication	 models	 as	 mentioned	 in	 D3.3.	 In	
document	 D3.1	 we	 previously	 proposed	 3	 different	 mechanisms	 to	 support	
push-based	 services	 over	 NDN.	 As	 mentioned	 in	 the	 INRPP	 NDN	 design	
principle,	 the	 receiver	 continuously	 adjusts	 its	 requesting	 rate	 for	 sending	
Interest	packets	to	fetch	the	incoming	data.		Upon	detection	of	a	congested	link	
between	an	intermediate	node	and	the	receiver,	the	intermediate	node	sends	a	
notification	 to	 the	 receiver	 to	 instruct	 it	 to	 reduce	 its	 requesting	 rate.	 The	
intermediate	 node	 can	 apply	 the	 Interest	 notification	 [32]	 pull	 model	 by	
appending	information	of	the	flow	state	into	the	interest	name	(i.e.,	the	data	is	
embedded	 in	 the	 string	 format).	 The	 result	 is	 that	 the	 receiver	 is	 able	 to	
proactively	 adjust	 the	 requested	 interest	 rate	 to	 avoid	 the	 congestion.		
However,	not	all	of	them	maintain	1-to-1	flow	balance	of	Interest	Packets	and	
Data	 packets.	 Therefore,	 we	 cannot	 foresee	 the	 traffic	 over	 an	 interface	 by	
keeping	 track	 of	 the	 requested	 packets	 and	 we	 would	 need	 a	 secondary	
mechanism	 to	 detect	 congestion	 in	 a	 link.	 However,	 the	 monitoring	 method	
used	 in	 the	 INRPP	 implementation	 for	 TCP/IP	 cannot	 be	 used	 in	 case	 of	
wireless	 links,	 since	 frequent	 disconnections	 and	 packet	 loss	 in	 wireless	
environments,	hinder	the	possibility	of	using	the	same	monitoring	mechanisms	
than	used	in	Section	2.2.	

• Wireless	 links:	 In	 the	 INRPP	 solution	 for	 TCP/IP	 networks	 we	 assume	 the	
capacity	 of	 a	 link	 is	 known	 and	 constant.	 However,	 in	 highly	 dynamic	 and	
disrupted	 wireless	 environment,	 such	 as	 the	 UMOBILE	 domain,	 we	 cannot	
consider	the	capacity	of	a	link	as	known	and	constant,	since	it	is	highly	variable	
and	 depends	 on	 several	 factors,	 such	 as	 SNR,	 interference,	 contention,	 etc.	
Therefore,	 we	 will	 need	 a	 mechanism	 to	 foresee	 the	 capacity	 of	 a	 link	 in	 a	
determined	time,	and	the	state/condition	of	the	link	(connected,	disconnected,	
packet	loss,	etc).	

• DTN	opportunistic	links:	As	described	in	D3.1,	UMOBILE	provides	an	integrated	
information-centric	 delay-tolerant	 architecture.	 In	 particular,	 UMOBILE	
supports	 a	 forwarding	 method	 for	 opportunistic	 communications	 based	 on	
DTN	 tunneling	 (using	 the	 IBR-DTN	 implementation)	which	 is	 exploited	when	
the	selection	of	the	DTN	face	seems	to	be	the	best	choice	(e.g.	in	terms	of	cost).	
On	 the	 one	 hand,	 DTN	 tunnelling	 hinders	 the	 implementation	 of	 the	 INRPP	

	

	

mechanism,	 since	 detouring	 and	 backpressure	 assumes	 undisruptive	
communications.	 On	 the	 other	 hand,	 the	 selection	 of	 the	 DTN	 forwarding	
approach,	can	be	exploited	to	shift	content	distribution	in	time	(i.e.	suspend	the	
transmission	of	non-critical	data	until	the	network	is	no	longer	congested).	We	
aim	 to	 further	 investigate	 whether	 detouring	 and	 backpressure	mechanisms	
can	 still	 be	 used	 along	with	 the	 DTN	 face,	 as	well	 as	 how	 the	 delay-tolerant	
forwarding	approach	can	be	used	as	a	congestion	control	mechanism.	

• Out-of-order	delivery:	out-of-order	delivery	 is	 an	 important	 issue	 that	we	will	
need	to	be	dealt	with,	in	case	of	detouring	path	with	different	characteristics.	

• Pull	 multicast	 [33]:	 Regarding	 the	 in-network	 caching	 feature	 of	 NDN,	 the	
content	 is	 automatically	 cached	 in	 the	 routers	 along	 the	 path	 between	 the	
content	provider	and	the	receiver	(on	path	caching).	Consequently,	if	there	is	a	
subsequent	 request	 for	 the	 same	 content,	 the	 router’s	 cache	 will	 directly	
response	 to	 the	 request	without	 adding	more	 traffic	 to	 the	 network	 towards	
the	 original	 content	 provider.	 In	 this	 manner,	 the	 congestion	 will	 be	
significantly	controlled	as	the	bandwidth	over	the	network	is	better	utilised.	To	
benefit	 from	 this	 feature,	 we	 aim	 to	 further	 investigate	 pull	 multicast	
mechanisms	in	situations	where	several	users	requests	the	same	piece	of	data.	
A	potential	solution	is	to	develop	mechanisms	to	support	request	aggregation	
in	 the	 routers.	 The	 intuition	 is	 that	 upon	 receiving	 several	 requests	 for	 the	
same	piece	of	data,	the	router	abstracts	them	as	a	single	request	and	sends	it	to	
the	 original	 content	 provider.	 When	 the	 corresponding	 response	 is	 received	
(either	a	single	or	several	chunks)	the	router	caches	 it	 in	 its	memory.	Then	it	
multicasts	it	to	the	group	of	requesters.	

5. Conclusions
In	 this	 document,	 we	 defined	 an	 initial	 approach	 of	 the	 UMOBILE	 flowlet	 congestion	
control	compatible	with	TCP/IP	networks.	Our	extensive	performance	evaluation	shows	
that	 INRPP	 does	 not	 risk	 network	 stability	 since	 it	 gets	 in	 a	 closed-loop	 mode	 when	
network	conditions	deteriorate.	That	said,	however,	when	the	network	is	less	congested,	
INRPP	takes	 immediate	advantage	of	all	 the	available	bandwidth	on	both	the	main	path	
and	 any	 detour	 available	 along	 the	 path.	 End-host	 clients	 do	 not	 need	 major	
modifications,	while	routers	need	to	be	equipped	with	caches	and	implement	the	detour	
and	backpressure	mechanisms.	We	believe	 that,	 given	 the	performance	 gains	of	 INRPP,	
the	 required	 changes	 are	 not	 prohibitive.	 	 In	 this	 document	we	 also	 included	 an	 initial	
investigation	 to	 adapt	 the	 INRPP	 congestion	 control	 to	NDN	networks	 compatible	with	
the	UMOBILE	wireless	Domain.	We	emphasise	 that	 the	plan	 is	 to	 take	advantage	of	 the	
transparencies	natively	supported	by	ICN	networks	like	NDN	to	ease	the	adaptation	of	the	
INRPP	congestion	control.		As	briefly	mentioned	in	the	Introduction,	a	key	observation	is	
that	in	data	centric	applications,	data	is	not	necessarily	transmitted	directly	from	the	data	

	

	

producer	to	the	end	data	consumer.	It	is	very	likely	that	the	original	data	will	eventually	
reach	 its	 end	data	 consumer	 through	a	data	pipeline	 composed	of	 several	 intermediate	
data	 services	 that	 are	 responsible	 for	 performing	 certain	 operations	 on	 the	 data	 (for	
example,	 caching,	 formatting,	aggregation,	 filtering,	 cleansing,	etc.).	Yet	we	are	only	at	a	
preliminary	 stage,	 we	 will	 explore	 these	 issues	 and	 the	 NDN	 built-in	 transparencies	
further	in	subsequent	deliverables.	

	
	
	
	
	
	
	

	

	

References
[1]	 R.	 Adams,	 “Active	 queue	 management:	 A	 survey,”	 IEEE	 Communications	 Surveys	

Tutorials,	2012.	

[2]	 D.	 Bansal	 and	 H.	 Balakrishnan,	 “Binomial	 congestion	 control	 algorithms,”	 in	 IEEE	
INFOCOM,	2001.	

[3]		K.	K.	Ramakrishnan	and	R.	Jain,	“A	Binary	Feedback	Scheme	for	Congestion	Avoidance	
in	Computer	Networks,”	ACM	Trans.	Comput.	Syst.,	vol.	8,	pp.	158–181,	May	1990.	

[4]		B.	Ford	and	J.	Iyengar,	“Breaking	up	the	transport	logjam,”	in	ACM	HotNets-VII,	2008.	

[5]		B.	Ford	and	J.	Iyengar,	“Efficient	cross-layer	negotiation,”	in	ACM	HotNets-VIII,	2009.	

[6]		P.	P.	Mishra	and	H.	Kanakia,	“A	hop	by	hop	rate-based	congestion	control	scheme,”	in	
ACM	SIGCOMM,	1992.	

[7]	 S.	 Sinha,	 S.	 Kandula,	 and	 D.	 Katabi,	 “Harnessing	 TCP’s	 burstiness	 with	 flowlet	
switching,”	in	ACM	HotNets-III,	2004.	

[8]		V.	Jacobson,	“Congestion	avoidance	and	control,”	in	ACM	SIGCOMM,	1988.	

[9]	 D.-M.	 Chiu	 and	 R.	 Jain,	 “Analysis	 of	 the	 increase	 and	 decrease	 algorithms	 for	
congestion	avoidance	in	computer	networks,”	Computer	Networks	and	ISDN	Systems,	
vol.	17,	no.	1,	pp.	1	–	14,	1989.	

	[10]	 I.	 Psaras,	 L.	 Saino,	 and	 G.	 Pavlou,	 “Revisiting	 resource	 pooling:	 The	 case	 for	 in-
network	resource	sharing,”	in	Proceedings	of	the	13th	ACM	Workshop	on	Hot	Topics	
in	Networks,	HotNets-XIII,	(New	York,	NY,	USA),	pp.	24:1–24:7,	ACM,	2014.	

[11]	 	 N.	 Dukkipati,	 M.	 Kobayashi,	 R.	 Zhang-Shen,	 and	 N.	 McKeown,	 “Processor	 sharing	
flows	in	the	internet,”	in	IWQoS’05,	pp.	271–285.	

[12]	 	 C.	 M.	 D.	 Pazos	 and	 M.	 Gerla,	 “A	 rate	 based	 back-pressure	 flow	 control	 for	 the	
internet,”	in	IFIP	HPN,	1998.	

[13]	 	 S.	 Sarkar	 and	 L.	 Tassiulas,	 “Back	 pressure	 based	 multicast	 scheduling	 for	 fair	
bandwidth	allocation,”	in	IEEE	INFOCOM,	vol.	2,	pp.	1123–1132	vol.2,	2001.	

[14]		N.	Spring,	R.	Mahajan,	D.	Wetherall,	and	T.	Anderson,	“Measuring	isp	topologies	with	
rocketfuel,”	IEEE/ACM	Trans.	Netw.,	vol.	12,	pp.	2–16,	Feb.	2004.	

[15]		“NS-3,	A	Discrete	Event	Simulator.”	http://www.nsnam.org.		

[16]	 “Kickass	 for	 NS-3	 -	 v.	 1.0.”		
http://users.eecs.northwestern.edu/~mef294/projects/kickass/code/README-
kickass-ns3.	

[17]	 G.	 Appenzeller,	 I.	 Keslassy,	 and	 N.	 McKeown,	 “Sizing	 router	 buffers,”	 SIGCOMM	
Comput.	Commun.	Rev.,	vol.	34,	pp.	281–292,	Aug.	2004.	

[18]	 N.	 Dukkipati	 and	 N.	 McKeown,	 “Why	 flow-completion	 time	 is	 the	 right	metric	 for	
congestion	control,”	SIGCOMM	Comput.	Commun.	Rev.,	vol.	36,	pp.	59–62,	Jan.	2006.	

	

	

[19]	 	 R.	 Jain,	 D.	 Chiu,	 and	 W.	 Hawe,	 “A	 Quantitative	 Measure	 Of	 Fairness	 And	
Discrimination	 For	 Resource	 Allocation	 In	 Shared	 Computer	 Systems,”	 eprint	
arXiv:cs/9809099,	Sept.	1998.	

[20]		E.	Gavaletz	and	J.	Kaur,	“Decomposing	rtt-unfairness	in	transport	protocols,”	in	Local	
and	Metropolitan	Area	Networks	(LANMAN),	2010	17th	IEEE	Workshop	on,	pp.	1–6,	
May	2010.	

[21]	 	M.	 Zukerman,	 T.	 D.	 Neame,	 and	R.	 G.	 Addie,	 “Internet	 traffic	modeling	 and	 future	
technology	implications,”	in	INFOCOM	2003.	Twenty-Second		

								Annual	 Joint	Conference	of	 the	IEEE	Computer	and	Communications.	 IEEE	Societies,	
vol.	1,	pp.	587–596	vol.1,	March	2003.	

[22]		J.	Iyengar,	P.	Amer,	and	R.	Stewart,	“Receive	buffer	blocking	in	concurrent	multipath	
transfer,”	in	Global	Telecommunications	Conference,	2005.	GLOBECOM	’05.		IEEE,	vol.	
1,	pp.	6	pp.–,	2005.	

[23]	 T.	 Dreibholz,	 M.	 Becke,	 E.	 P.	 Rathgeb,	 and	 M.	 Tuxen,	 “On	 the	 use	 of	 concurrent	
multipath	 transfer	 over	 asymmetric	 paths,”	 	 in	 Global	 Telecommunications	
Conference	(GLOBECOM	2010),	2010	IEEE,	pp.	1–6,	Dec	2010.	

[24]	G.	Carofiglio,	M.	Gallo,	and	L.	Muscariello.	 ICP:	Design	and	evaluation	of	an	 interest	
control	 protocol	 for	 Content-Centric	 Networking.	 In	 IEEE	 INFOCOM	NOMEN,	 pages	
304–309,	2012.	

[25]	 G.	 Carofiglio,	 M.	 Gallo,	 and	 L.	 Muscariello.	 Joint	 hop-by-hop	 and	 receiver-driven	
interest	control	protocol	for	content-centric	networks.	In	ACM	SIGCOMM	ICN,	2012.	

[26]	T.	 Janaszka,	D.	Bursztynowski,	and	M.	Dzida.	On	popularity-based	load	balancing	in	
content	networks.	In	ITC-24,	2012.	

[27]	S.	Oueslati,	 J.	Roberts,	and	N.	Sbihi.	Flow-aware	 traffic	control	 for	a	content-centric	
network.	In	IEEE	INFOCOM,	2012.	

[28]	N.	Rozhnova	and	S.	Fdida.	An	effective	hop-by-hop	 interest	shaping	mechanism	for	
CCN	communications.	In	IEEE	INFOCOM	NOMEN,	pages	322–327,	2012.	

[29]	 S.	 Salsano	 et	 al.	 Transport-layer	 issues	 in	 information	 centric	 networks.	 In	 ACM	
SIGCOMM	ICN,	2012.	

[30]	C.	Yi	et	al.	A	case	 for	stateful	 forwarding	plane.	Comput.	Commun.,	36(7):779–791,	
Apr.	2013.	

[31]	P.	P.	Mishra	and	H.	Kanakia.	A	hop	by	hop	rate-based	congestion	control	scheme.	In	
ACM	SIGCOMM,	1992.	

[32]	 M.	 Amadeo,	 C.	 Campolo,	 A.	 Molinaro,	 and	 N.	 Mitton,	 “Named	 data	 networking:	 a	
natural	 design	 for	 data	 collection	 in	 wireless	 sensor	 	 networks,”	 in	 Wireless	 Days	
(WD),IFIP,	2013.	

	

	

[33]	 P.	 K.	 Chrysanthis,	 V.	 Liberatore,	 and	 K.	 Pruhs.	 Middleware	 for	 scalable	 data	
dissemination.	 In	 Q.	 H.	Mahmoud,	 editor,	 Middleware	 for	 Communications,	 chapter	
10,	pages	237–260.	John	Wiley	&	Sons,	2004.	

[34]	L.	Saino,	C.	Cocora,	G.	Pavlou,	CCTCP:	a	 scalable	 receiver-driven	congestion	control	
protocol	for	content	centric	networking,	Proceeding	of	IEEE	ICC’13,	2013.		

[35]	L.	Zhang,	A.	Afanasyev,	J.	Burke,	V.	Jacobson,	K.	claffy,	P.	Crowley,	C.	Papadopoulos,	L.	
Wang,	B.	Zhang,	Named	data	networking,	ACM	SIGCOMM	Comput.	Commun.	Rev.	44	
(3)	(2014)	66–73.		

[36]	 I.	 Moiseenko	 and	 D.	 Oran.	 Flow	 Classification	 in	 Information	 Centric	 Networking	
draft-moiseenko-icnrg-flowclass-00,	 July	 22,	 2016.	 Icnrg	 Internet-Draft,	 Intended	
status:	Informal,	Expires	Jan	23,	2017.	

[37]	C.	Xia	and	M.	Xu.	RRCP.	A	Receiver-Driven	and	Router-Feedback	Congestion	Control	
Protocol	for	ICN.	In	Proc.		Third	Int’l	Conf.	on	Networking	and	Distributed	Computing,	
21-24	Oct,	Hangzhou,	Zhejiang,	China	2012.	

[38]	D.	 Katabi,	M.	Handley	 and	 C.	 Rohrs,	 Congestion	 Control	 for	High	Bandwidth-Delay	
Product	 Networks,	 In	 Proc.	 SIGCOMM’02,	 August	 19-23,	 Pittsburgh,	 Pennsylvania,	
USA,	2002.	

[39] Y. Ren, J. Li, S. Shi, L. Li, G. Wang and B. Zhang. Congestion Control in Named Data
Networking – A survey. Computer Communication, Vol. 86, July, pag. 1–11, 2016.

[40]	 	D.	Wischik,	C.	Raiciu,	A.	Greenhalgh,	and	M.	Handley,	 “Design,	 implementation	and	
evaluation	of	congestion	control	for	multipath	TCP,”	in	USENIX	NSDI,	2011.	

[41]		M.	Zhang	et	al.,	“A	transport	layer	approach	for	improving	end-to-end	performance	
and	robustness	using	redundant	paths,”	in	USENIX	ATEC,	2004.	

[42]	 	C.	Raiciu	et	al.,	“Improving	datacenter	performance	and	robustness	with	multipath	
TCP,”	in	ACM	SIGCOMM,	2011.	

[43]		D.	Wischik,	M.	Handley,	and	M.	B.	Braun,	“The	resource	pooling	principle,”	SIGCOMM	
Comput.	Commun.	Rev.,	vol.	38,	pp.	47–52,	Sept.	2008.	

[44]	 	M.	Honda,	 E.	 Balandina,	 P.	 Sarolahti,	 and	 L.	 Eggert,	 “Designing	 a	 resource	 pooling	
transport	protocol,”	in	IEEE	INFOCOM	workshops,	pp.	13–18,	2009.	

[45]		C.	Hopps,	“IETF	RFC	2992,	analysis	of	an	equal-cost	multi-path	algorithm,”	2000.	

[46]	 J.	He	and	 J.	Rexford,	 “Toward	 internet-wide	multipath	routing,”	Network,	 IEEE,	vol.	
22,	no.	2,	pp.	16–21,	2008.	

[47]		X.	Liu	and	L.	Xiao,	“A	survey	of	multihoming	technology	in	stub		networks:		Current		
research		and		open		issues,”		Netwrk.	Mag.	of	Global	Internetwkg.,	vol.	21,	pp.	32–40,	
May	2007.	

[48]		C.	Lumezanu,	D.	Levin,	and	N.	Spring,	“PeerWise	Discovery	and	Negotiation	of	Faster	
Paths,”	in	ACM	HotNets-VI,	2007.	

	

	

[49]	 	S.	Kandula,	D.	Katabi,	B.	Davie,	and	A.	Charny,	“Walking	the	Tightrope:	Responsive	
Yet	Stable	Traffic	Engineering,”	in		ACM	SIGCOMM,	2005.	

[50]	D.	G.	Andersen,	A.	C.	Snoeren,	and	H.	Balakrishnan,	“Best-path	vs.	multi-path	overlay	
routing,”	in	ACM	SIGCOMM	IMC,	pp.	91–100,	2003.	

[51]	 R.	 Kokku,	 A.	 Bohra,	 S.	 Ganguly,	 and	 A.	 Venkataramani,	 “A	 multipath	 background	
network	architecture,”	in	IEEE	INFOCOM,	pp.	1352–1360,	2007.	

[52]	 S.-J.	 Lee,	 S.	 Banerjee,	 P.	 Sharma,	 P.	 Yalagandula,	 and	 S.	 Basu,	 “Bandwidth-aware	
routing	in	overlay	networks,”	in	IEEE	INFOCOM,	pp.	1732–1740,	2008.	

[53]	 	 P.	 Key,	 L.	 Massouli´e,	 and	 D.	 Towsley,	 “Path	 selection	 and	 multipath	 congestion	
control,”	Commun.	ACM,	vol.	54,	pp.	109–116,	Jan.	2011.	

[54]		R.	Khalili,	N.	Gast,	M.	Popovic,	U.	Upadhyay,	and	J.-Y.Le	Boudec,	“Mptcp	is	not	pareto-
optimal:	 Performance	 issues	 and	 a	 possible	 solution,”	 in	 Proceedings	 of	 the	 8th	
International	 Conference	 on	 Emerging	 Networking	 Experiments	 and	 Technologies,	
CoNEXT	’12,	(New	York,	NY,	USA),	pp.	1–12,	ACM,	2012.	

[55]	 C.	 Raiciu,	 M.	 Handley,	 and	 D.	Wischik,	 “Coupled	 Congestion	 Control	 for	 Multipath	
Transport	Protocols.”	RFC	6356	(Experimental),	Oct.	2011.	

[56]	 Y.	 Thomas,	 G.	 Xylomenos,	 C.	 Tsilopoulos	 and	 G.	 C.	 Polyzos,	 "Multi-flow	 congestion	
control	with	network	assistance,"	2016	IFIP	Networking	Conference	(IFIP	Networking)	
and	 Workshops,	 Vienna,	 2016,	 pp.	 440-448.	
doi:	10.1109/IFIPNetworking.2016.7497200	

	

	

	

