

1

Action full title:

Universal, mobile-centric and opportunistic

communications architecture

Action acronym:

UMOBILE

Deliverable:

D4.4 “Set of QoS interfaces and algorithms”

Project Information:

Project Full Title Universal, mobile-centric and opportunistic communications architecture

Project Acronym UMOBILE

Grant agreement number 645124

Call identifier H2020-ICT-2014-1

Topic ICT-05-2014 Smart Networks and novel Internet Architectures

Programme EU Framework Programme for Research and Innovation HORIZON 2020

Project Coordinator Prof. Vassilis Tsaoussidis, Athena Research Center

2

Deliverable Information:

Deliverable Number-Title D4.4 Set of QoS interfaces and algorithms

WP Number WP4

WP Leader Rute Sofia (SENCEPTION)

Task Leader (s) Carlos Molina-Jimenez (UCAM)

Authors
UCAM: Adisorn Lertsinsrubtavee, Carlos Molina-Jimenez

ATHENA: Sotiris Diamantopoulos, Christos-Alexandros Sarros

UCL: Sergi Rene, Ioannis Psaras

Contact Carlos.Molina@cl.cam.ac.uk

Due date M30: 31/07/2017

Actual date of submission 31/07/2017

Dissemination Level:

PU Public

CO Confidential, only for members of the consortium (including the Commission Services)

CI Classified, as referred to in Commission Decision 2001/844/EC

Document History:

Version Date Description

Version 0.1 15/06/2017 First draft to the consortium

Version 0.2 9/ 07 /2017 Second draft to the consortium after receiving contributions from partners

Version 0.3 14/ 07/2017 Third draft to the involved partners for alignment with D3.2 and D3.4

Version 0.4 20/07/2017 Final version

3

Table of Contents

Table of Contents ... 3
List of figures .. 4
List of tables ... 4

EXECUTIVE SUMMARY ... 5

1. INTRODUCTION ... 6

2. UMOBILE ARCHITECTURE .. 9

3. QOS MECHANISMS ... 10
3.1 Application level QoS mechanisms ... 10
3.2 Network level QoS mechanisms ... 10
3.3 Layered QoS mechanisms .. 11
3.4 UMOBILE QoS mechanisms .. 11

4. SERVICE MIGRATION PLATFORM .. 12
4.1 Reactive and proactive (pre-fetching) service migration ... 14
4.1.1 Reactive service migration ... 15
4.1.2 Proactive service migration (pre-fetching) .. 15
4.1.3 Introductory example .. 15
4.1.4 Decision engine algorithms and interfaces .. 16

5 DTN FRAMEWORK ... 18
5.1 Architecture and functionality of the DTN framework ... 18
5.2 DTN integration interfaces .. 19

6 FLOWLET CONGESTION CONTROL .. 19
6.1 Architecture and functionality of the INRPP congestion control ... 19
6.2 INRPP integration interfaces ... 22

7 EVALUATION OF QOS-RELATED PARAMETERS ... 23
7.1 Experiment settings... 23
7.2 Impact of the number of concurrent requests on QoS .. 24
7.3 Impact local container replication .. 26
7.4 Local vs Remote Container Replication .. 29
7.5 Container replication cost ... 31

8 FULFILMENT OF QOS REQUIREMENTS .. 32
8.1 Handling numbers of concurrent requests with local replication .. 36
8.2 Meeting of availability requirements with DTN support ... 41
8.2.1 QoS requirements and scenario... 42
8.2.2 Service migration-DTN integration architecture ... 43
8.2.3 Practical demonstration .. 44
8.2.4 Discussion of results .. 46
8.3 Meeting of availability requirements with INRPP support ... 47
8.3.1 Service migration-INRPP integration architecture.. 47
8.3.2 QoS requirements and scenario... 48
8.3.3 Service migration-INRPP evaluation results .. 49

4

9 CONCLUDING REMARKS .. 51

10 REFERENCES ... 53

List of figures

Figure 1: Business model. .. 8
Figure 2: UMOBILE architecture. ... 9
Figure 3: Layered QoS mechanisms ... 11
Figure 4: Service migration view of the UMOBILE architecture. ... 12
Figure 5: Left: e2e Flow Control: Bandwidth is split according to the slowest link on the path. Right: INRPP:
Bandwidth is split equally up to the bottleneck link (global fairness). Detour applies to guarantee local
stability. .. 20
Figure 6: Average success rate of four containers. .. 25
Figure 7: Experiment settings. ... 26
Figure 8 : CPU utilization of busybox on the RPi. ... 27
Figure 9: CPU load of busybox on the RPi. .. 27
Figure 10: CPU utilisation of nginx on the RPi. ... 28
Figure 11: CPU load of nginx on the RPi. .. 28
Figure 12: CPU utilization of tomcat on the RPi. ... 28
Figure 13: CPU load of tomcat on the RPi. .. 28
Figure 14: CPU utilization of busybox containers. .. 29
Figure 15: CPU utilization of nginx containers. .. 29
Figure 16: CPU utilization of nginx containers. .. 29
Figure 17: Response time of the busybox web server. .. 30
Figure 18: Response time of the nginx web server. .. 30
Figure 19: Response time of the tomcat web server ... 30
Figure 20: CPU utilization of a RPi under stressing loads. .. 31
Figure 21: CPU load of a RPi under stressing loads. ... 31
Figure 22: Container replication cost. .. 32
Figure 23: The Service Manager and its QoS mechanisms. ... 33
Figure 24: Integration of Service Migration and DTN to meet availability requirements. 42
Figure 25: UMOBILE components involved in the integration of service migration and DTN. 43
Figure 26: Laboratory settings for proving integration of service migration and DTN. 44
Figure 27: UMOBILE components involved in the integration of service migration and INRPP. 47
Figure 28: Integration Service Migration and INRPP to meet the QoS requirements. 49
Figure 29: Average flow completion time for two docker images using INRPP with full priority (FP) and no-
priority (NP) compared with random flows using plain NDN. ... 49
Figure 30: Average throughput for two docker images using INRPP with full priority (FP) and no-priority
(NP) compared with random flows using plain NDN. ... 50

List of tables

Table 1: Examples, of services with their service description. ... 14
Table 2: Sizes of Dockerized images of four popular web services.. 24
Table 3: QoS mechanisms used for supporting services of different classes with specific QoS parameters. . 33

5

Executive summary

Background: This document is the D4.4 deliverable: Set of QoS interfaces and algorithms.

D4.4 is due on month 30 (Jul 2017) and is one of the five deliverables included in WP4:

Service enablement.

The main objective of WP4 is to enhance UMOBILE architecture by means of the

development of mechanisms to provide QoS. These mechanisms will enable the

deployment of services with different levels of QoS demands ranging from less-than-best-

effort to guaranteed QoS. In this delivery, we contemplate three classes of services: less-

than-best-effort, best-effort and premium.

In pursuit of this aim, these mechanisms are expected to take advantage of the ICN

features of the UMOBILE architecture.

The specific objectives of the WP4 are the following:

O4.1: To enable services which fully exploit the inherent opportunistic nature of

communication.

O4.2: To enable the “Internet” experience as many people know it, with applications such

as web, email, and the like. The challenge here lies in dealing with the inherent

disconnectivity of challenged environments by catering to the network challenges and/or

adjusting the expected user experience. 

O4.3: To develop mechanisms for processing of sensor data through context

understanding.

O4.4: To provide different levels of QoS depending on the needs of each user/network

ranging from less-than-best-effort to guaranteed services.

The outcome of WP4 will be the enablement of services that support the key

characteristics of the developed platform: delay-tolerance and content-centricity.

To fulfill these objectives and as part of the activities envisioned by Task 4.1, UCAM,

ATHENA (formerly DUTH) and UCL have implemented independently different

mechanisms that operate at different levels of the software stack when offering UMOBILE

services to users.

In the UMOBILE project, we have defined and developed another set of mechanisms

aimed at prioritizing emergency traffic limited in certain areas and time space, called

Name-based replication priorities, for opportunistic communications without

infrastructure using Device-to-Device communications. However, these QoS mechanisms

for opportunistic communications are developed in Task 4.3 and not in Task 4.1 of the

WP4 and have already been defined and detailed in D3.1 deliverable [1]. Therefore this

document does not include the Name-based replication priorities mechanisms and is

focused on QoS mechanisms of UMOBILE services. The set of QoS mechanisms that this

document describes are the following:

• Application level QoS mechanisms

6

o Service Migration Platform (SM)

• Network level QoS mechanisms

o Delay-Tolerant Framework (DTN)

o Flowlet Congestion Control (INRPP).

These mechanisms have been implemented to operate independently in the sense that

they use their own algorithms to address QoS requirements. However, they can also be

integrated to operate in collaboration mode offering a unified approach towards QoS.

Their collaboration is highly desirable in applications that involve QoS parameters that

are visible and amenable to manipulation at different levels of the software stack. In

account of potential integration, we have built interfaces that a designer can use to

integrate one with another.

We have organized the document as follows: Section 1 (Introduction) discusses some core

concepts on which the subsequent sections are based. Section 2 presents a summary of

the UMOBILE architecture. In Section 3 we explain the layered approach that we have

taken to deploy QoS mechanisms in the UMOBILE project. Section 4 explains the

architecture of the Service Migration Platform. The focus of the discussion is on the

components of the architecture and the algorithms and interfaces that the decision engine

uses. It also explains how the service migration platform can work collaboratively with

the DTN-framework and INRPP. Section 5 presents and overview of the architecture of

the DTN-framework. The focus is on the interfaces that it offers to other modules, in

particular to the Service Migration Platform. Section 6 presents and overview of the

architecture of the Flowlet Congestion Control mechanism. The focus is on how this

module can collaborate with Service Migration Platform and DTN-framework in the

fulfillment of common QoS requirements. In Section 7 we present the results of a series of

laboratory experiments that we have conducted to identify the parameters and their

critical values (thresholds) that the algorithms of the Service Migration platforms needs

to take into consideration to decide on opportunistic deployment of service instances. In

section 8 we present examples of results that we have achieved to proof the impact of the

QoS mechanisms that we have developed. We include examples that show how these QoS

mechanisms can be integrated to offer a unified approach towards QoS. The examples

show how they can collaborate with each other in the fulfillment of common QoS

requirements. Finally, in the Conclusion section (Section 9) we summarize our findings

and discuss open questions that we are currently addressing.

1. Introduction

In this document, we define a service an application that after being instantiated (from an
image) is capable of receiving requests from remote users, processing them and
responding with the corresponding results. We use services and applications as
synonymous. In the implementations conducted in this projects, we use lightweight

7

virtualization technology (i.e., docker1) to compress the service as lightweight container.

Services are categorized into stateful and stateless [2]. The application level mechanisms
(explained in Section 3) that we have developed QoS are aimed at stateless services, that
is, services that, upon request, provide information to clients but do not keep information
(state) about their interactions. In stateless services, each request contains all the
information that the service needs to process it. Consequently, the service can treat each
request independently from others. A positive effect that results from this interaction
model is the decoupling between clients and services. Stateless services are quite
common and comparatively simple to design and manage. Examples of services that fall
within this category are the conventional RESTful web services.

Another central feature of the services of our interest is that they are single purpose in
the sense that they are built to perform very specific functions for an arbitrarily short
time. For example, a service is instantiated to respond to a single or few user requests and
discharged. Single purpose services can be assembled into small size images, of the order
of a few Mbytes. When additional functionalities are required, independent services are
built rather that aggregating them in a single service. We have focused on stateless
services of small size because they are emerging as promising technology to be used in
edge network computing. Also they match the services used is the scenarios covered by
the UMOBILE project such as the web services to be deployed in emergencies scenarios.

One of the salient advantages of stateless services of small size images is their flexibility in
deployment. They can be instantiated, migrated, replicated and discharged by the service
provider transparently, that is, without serious consequences to the end-users.
Transparent mechanisms are simple to deploy, for example, it is not difficult for a service
provider to deploy request redirection mechanisms (also called proxies). In this manner,
an end-user that places a request against an instance that has been discharged can simply
resend the request on the hope that it will be redirected towards an equivalent instance.
These operations are central to the service migration platform that we have implemented.

A central concept in this deliverable is service deployment which we understand as the
act of: retrieving an image of a service from a repository, copying the image to a computer that

act as a service host and, instantiating it, always from scratch, as opposed to resuming it from a

previously suspended image.

We assume that one of more instances of a given service can be grouped within a single
host or spread over several of them. Likewise, a service host can run several instances
that are not necessarily of the same service. Deployment of stateful images is discussed in
[3].

 In this deliverable, we consider a service delivery scenario where a group of remote end–
users are interested in accessing services run by a service provider over a network
infrastructure that suffers from typical network impairments such as latency, jitter,
congestion, limited bandwidth, packet loss and temporary disconnections.

The end-users are assumed to pay for service access and, consequently, expect some
levels of QoS from the service provider. The QoS parameters expected vary and are

1 https://www.docker.com

8

determined by their applications. However, to frame our discussion, in this document we
will focus on service availability and latency constraints on the basis that additional QoS
constraints can be gradually incorporated to the platform presented in this document.

In addition to the service provider and the end-user, other parties are involved in the
delivery of the service that interact with each other on the basis of an agreed business
model.

The business model determines who is in control and responsible for what and, more
importantly, how value is created and revenue generated. There are several alternatives
[4,5,6]. In this document, we assume the emerging content access business model where
the network provider (also called the ISP provider) offers both network and application
services to end–users. The choice of the business model is in line with the latest trends in
content delivery that show that traditional ISP are gradually deploying their own content
distribution networks. A conceptual view of this model is shown in Figure 1.

Figure 1: Business model.

This model is network provider centric. The network provider is in possession of the
network infrastructure, computational and storage resources (HS1, HS2 and HS3) that he is
willing to virtualise to host and deliver services to end-users. The Service Producer is a
party in possession of several services (Sa, Sb and Sc) that he is willing to offer to end-users
but not directly, say, because he does not have the interest or means to deal directly with
end-users, consequently, the Service Producer strikes a bargain with the network
provider and delegates to the latter the responsibility of offering the services to end-
users.

In this business model, the Service Producer delegates the responsibility of deploying the
services under the needed and well–specified QoS requirements to the network provider.
For example, a given service Sa might require guaranteed QoS whereas Sc might require

network provider

HS2	 HS3	HS1	

End-user	

Sa	 Sb	 Sc	

Service Producer

application
level

latency

network
level

latency

network
infrastructure

9

less-than-best-effort. QoS parameters are impacted at different parts of the infrastructure,
as shown in the figure the latency perceived by and end-user is the result of the latency
caused by the application (for example, the time it takes the server to process and present
the request to the network interface) and the network (the time it takes requests and
responses to transverse the network).

To face the challenge, the network provider relies of his pool of virtualisable resources,
namely a set of hosting computers. He is also in possession of the technical description of
his resources such as their cpu, memory and disk capacities. In addition, the network
provider is in a position to deploy run-time monitors (for example, in each hosting
computer and network routers) that provide him with metrics about current usage and
demand placed by end users.

On the basis of this information, the network provider can develop and deploy
mechanisms that operate at different levels of the software stack to help him deliver the
services with the expected QoS even in the presence of temporary disconnections and
other network impairments as discussed above. These mechanisms are not available yet
in ICN networks. As explained later, a key feature of these QoS mechanisms is the level of
the software stack where they are deployed. At one end of the spectrum, we can deploy
network level mechanisms whereas at the other extreme, application level mechanisms
can be deployed. Examples of such mechanisms are the three mechanisms that the
UMOBILE consortium is currently developing: Service Migration Platform, Delay Tolerant
Framework and Flowlet Congestion Control.

2. UMOBILE architecture

To set the scenario, this section presents a brief summary of the UMOBILE network
architecture explained at large in the D3.1 deliverable [1].

Figure 2: UMOBILE architecture.

10

In the figure, the UMOBILE Area is a network built on the basis of the services that the
UMOBILE project is developing (see Figure 2). As indicating in the figure, it is NDN based
since our development is based on the latest release of the NDN software [7]. The
UMOBILE Hotspots connected to the UMOBILE Area network represent the computers
that the network provider uses for hosting his services. Two of them are shown in the
figure, yet, there can be as many as necessary. The UMOBILE Hotspots are enabled with
WiFi communication facilities that they use to offer access to the end user devices. Two of
them are shown in the figure (U1 and U2). The end user devices are in possession of D2D
(Device to Device) communication facilities.

The left-most UMOBILE Hotspot is connected to a UMOBILE network which is
represented by a line. In the UMOBILE project such a network is built out of several
UMOBILE Hotspots with routing functionalities. A central element of this UMOBILE
network is a computer with disk facilities for storing UMOBILE services and represented
by the yellow ellipse located on the left. A key service that we have developed in the
UMOBILE project is the Service Manager. Observe that this computer can communicate
with the conventional TCP/IP Internet through a gateway (UMOBILE Gateway).

3. QoS mechanisms

Figure 3 shows an end-user placing a request against a remote service with QoS
constraints and deployed in a host. The QoS perceived through the response is
determined by several parameters that are accessible at different levels of the software
stack ranging from the actual application (a service) to the network. Latency for example,
is determined by different sources of delays located between the end–user and the service
(see Figure 1). For example, the host that runs the service might be overloaded, the actual
service might be struggling to handle an unexpected burst of requests, the network might
be suffering from congestion, etc. The sources of delays can be grouped into application
level and network level. The separation allows designers to address QoS requirements by
means of mechanisms deployed between the application layer and the network layers.
The motivation for this approach is that it is widely acknowledged that some parameters
that impact the QoS as perceived by the end user, are easy to measure and manipulate at
different levels of the software.

3.1 Application level QoS mechanisms

At this level, the issue can be addressed by mechanisms that manipulate the actual
application and the resources where the application is executed, for example, the hosting
servers. These mechanisms can be based on metrics about the configurations of the hosts
and their current status of resources such as the current load inflicted on the CPU. As
elaborated in subsequent sections, a well-known technique that we are exploring is
service replication. Notice that these mechanisms rely on both, the optimisation of the
usage of available resources and the possibility of deploying additional ones such as more
virtual machines.

3.2 Network level QoS mechanisms

At this level, the issue can be tackled by mechanisms that manipulate network packets.
The idea is to use traffic engineering techniques aimed at the optimisation of the use of
network resource in existence, mainly by means of monitoring and manipulating network

11

traffic. Consequently, their effectiveness depends on and is bounded by the amount of
resources available. In other words, congestion control mechanisms can do nothing when
the available network resources are already exhausted. A representative example of such
mechanisms is congestion control which involves queue monitoring with subsequent
manipulation of network packet within routers. A good introduction into these techniques
is presented in [8]. The document introduces conventional TCP techniques such as end-
to-end flow control based on bandwidth split in accordance with the slowest link on the
path. Other techniques discussed are the In-Network Resource Pooling Protocol (INRPP)
that takes advantage alternative sub–paths and in–network cache to detour traffic that
exceeds the capacity of links.

3.3 Layered QoS mechanisms

In the UMOBILE project we take a layered approach to address QoS requirements (Figure

3). As shown in the figure, we have implemented QoS mechanisms that can be deployed
and operated independently but alternatively they can operate simultaneously and
complement each other. For instance, a service provider with powerful hosts and access
to a highly reliable network infrastructure might decide to bypass QoS mechanisms and
let end-user’s requests reach its service directly through the double arrowed dashed line.
In contrast, a service provider with resource—constrained hosts and a questionable
network infrastructure is very likely to opt for application level QoS mechanisms running
on top of network level QoS mechanisms as shown in the figure.

 Figure 3: Layered QoS mechanisms

3.4 UMOBILE QoS mechanisms

The UMOBILE project has developed three QoS mechanisms that operate at the
application and network level layered as shown in Figure 3.

• Application level

o Service Migration Platform

• Network level

12

o Delay Tolerant Framework (DTN)

o Flowlet Congestion Control (INRPP).

The overall functionalities of these mechanisms have been discussed in deliverable D3.1
[1]. The focus of this deliverable (D4.4) is on explaining and demonstrating how they can
collaborate in the fulfillment of QoS requirements.

4 Service migration platform

The application level QoS mechanisms that we have implemented is a service migration
platform that takes advantage of three fundamental concepts:

• Light weight virtualization technology

• Opportunistic service deployment

• Edge network computing

In brief, the central idea is to deploy services instantiated from Dockerised images upon
request and at hosts located at the edge of the network and with enough resources to run
them with assurance that the services will satisfy their QoS constraints. The architecture
of the Service Migration Platform is shown in Figure 4. The figure resulted from Figure 1
after highlighting the components involved in service migration.

Figure 4: Service migration view of the UMOBILE architecture.

The functionality of the components included in Figure 4 is as follows:

 UMOBILE
network

HS_1

Network	Faces	

S1

Service	
Execu on	

Monitoring	
Manager	

Monitoring	
Agent	

Service Providers

End-users

Service Manager PC

Service	
Manager	

Monitored	
Data	

Decision	
Engine	

Service	
Repo	

SEG_1	

Sn

HS_2

Network	Faces	

S1

Service	
Execu on	

Monitoring	
Agent	

End-users

SEG_2	

Sn

13

UMOBILE Network: The UMOBILE network is an NDN network with the software
components developed by the UMOBILE project that extend NDN with the QoS
mechanisms under discussion in this deliverable (Service migration Platform, DTN
framework and INRPP).

Service Providers: A service provider is a business entity that is responsible for
delivering services. In the UMOBILE project we assume a provider-centric business model
where the service provider is in full control of the communication infrastructure (i.e.,
routers, access point, IoT sensors) and several source constrained edge nodes such as
single board computers. The rationality behind this decision is that this business model is
increasingly gaining acceptance in the service provisioning market. The service migration
platform is meant to deploy services programmatically, that is, with as least as possible
human intervention.

Service Manager PC: it is an ordinary computer used by the service provider to deploy
the Service Manager and its components.

Service Manager: is the piece of software that is responsible for making informative
decisions on the deployment of services. Being the master module of the Service
Migration Platform, it is launched by Service Provider (a human being) when he or she
wishes to deploy services with QoS awareness.

The Service manager relies on four modules: Service Repo, Monitoring Manager, Decision
Engine and Monitored Data. Once lunched, it initiates (for example, it creates instances of
their Python classes) and coordinates their operations.

Decision Engine (DE): implements the logic for opportunistic deployment of instances of
services to meet QoS requirements. It operates on the basis of the QoS requirements of
individual services (as expressed in their service descriptions), service demand expressed
by end users, current status of resources (network and Hot Spots) and algorithms that
help determine where and when to deploy a requested service.

Monitoring Manager: is responsible for placing pull requests against the Monitor Agents
deployed in each Hotspot to collect information about the current status of their
resources and the current demand imposed on the service. The monitoring manager
stores the monitored that it collects about all Hotspot in the Monitored Data after
formatting it as json objects.

Service Repo: is a repository where dockerized compressed images of the services are

stored augmented with specification about their QoS requirements. The service

specification is a text file that describes the service (for example, service name, image

size), QoS parameters (for example, response time and availability) and class of the

service. Regarding the class of the service, in this delivery we consider only three classes

of services: less-than-best-effort, best-effort and premium.

Service Name Service Description

14

busybox web server Service features: image name, image size, …

QoS parameters: response time < 1 sec,

availability: 99.99, …

Class: premium

tomcat web server Service features: image name, image size, …

QoS parameters: response time < 2 sec,

availability: 99.99, …

Class: best-effort

Table 1: Examples, of services with their service description.

Monitored Data: is a permanent storage where the Monitored Manager store the
monitored data that it collects for the benefit of the Decision Engine.

Hotspot (HS): A Hotspot (also called an edge node) is a single board computer such as a
Raspberry Pi (RPi) or Internet home router with storage, CPU and software facilities for
hosting (upon request of the service controller) the execution of virtualised services. Two
of them are shown in the figure (HS_1 and HS_2) but there might be an arbitrary large
number of them. They are used for hosting the execution of service instances deployed by
the service migration platform (shown as S1 … Sn in the figure) for the benefit of the End-
users. To accomplish this task, the HSs run four modules that we have implemented: SEG,
Monitoring Agent, Service Execution and Network Faces.

Service Execution Gateway (SEG): A SEG is the master module implemented in Python
to run inside a hostspot. We show two of them in the figure (HS_1 and HS_2). The Service
Provider launches a SEG in each Hotspot to coordinate the execution of the local
Monitoring Agent and Service Execution.

Monitoring Agent: is a piece of software that is responsible for measuring the current
status of resources and the current demand imposed on the services. By resources we
mean, the actual hardware of the Raspberry Pis used to implement the Hotspot and the
Docker containers instantiated in the Raspberry Pis. The monitored data provided by
each Monitoring Agent is formatted as json objects.

Service Execution: is a piece of software that we have implemented to instantiate
containers automatically upon receiving requests from the Decision Engine.

End-user: End users are individuals in possession of mobile devices used for placing
service requests. They use the HSs to access the UMOBILE network.

4.1 Reactive and proactive (pre-fetching) service migration

The modules that compose the service migration platform (described above) are flexible
enough that they can be used to deploy services in accordance with different strategies.
Our research effort has focused on two of them: reactive service migration and proactive
service migration (pre-fetching). In the deliverable D3.4 we presented the general
principles of these strategies, in this deliverable we present a detailed discussion
supported with specific examples and results.

15

4.1.1 Reactive service migration

Reactive service migration is a mechanism that a service provider can use to deploy
instances of services when and where they are needed to meet the QoS expected from the
services. It is a reactive mechanism in the sense that it is used at service delivery time to
deploy instances in response to variations (between “vigorously running” and “showing
signs of exhaustion) of the status of the resources involved in the execution of running
instances. Examples of resources are the computers (Raspberry Pi) that we use in the
UMOBILE project for realising the hotspots and the Docker containers used for creating
the instances of the services. Information about the current status of the resources is
provided by the Monitoring Manager.

4.1.2 Proactive service migration (pre-fetching)

Service pre-fetching is a proactive mechanism that a service provider can use to cache
images of services before they are needed. It is a proactive mechanism in the sense that
images of the services are cached in advance (for example at midnight) and as close as
possible to where they will be subsequently instantiated and used. The cached instances
are not necessarily instantiated immediately after caching. Enough for the service
provider is to have them ready for instantiation when needed to meet the expected QoS
requirements. As opposed to reactive service migration, service pre-fetching is not
concerned with the current status of the resources where the instance will be
subsequently instantiated because this status is likely to change by the time the instance
is actually instantiated.

4.1.3 Introductory example

To explain the operation of the service migration platform let us discuss an example
where we use it as a reactive mechanism. Let us take Figure 4 and imagine that the
Service Provider is responsible for providing service S1 with certain QoS constraints. The
nature of the QoS parameters is irrelevant in this example, but one can think of response
time, availability and similar QoS parameters. Also, imagine that an End-user that
accesses the UMOBILE network through HS1 is interested in S1. No instances of S1 are
currently running.

To meet the expected QoS constraints, the Service Provider uses the service migration
platform and proceeds to launch it as follows:

16

1. The Service Provider launches the SEG_1 and SEG_1 in HS_1 and HS_2, respectively.

2. The Service Provider launches the Service Manager in the Service Manager PC.

3. The Service Provider stores an image of S1 and its service specifications (see Table
1) in the Service Repo.

4. The Service Manager periodically (for example, every 60 secs) executes the
Monitoring Manager to collect information about the latest status of the resources
of the HS1 and HS2.

5. The End-user places a request to access S1 that is received by the Service Manager.

6. The Service Manager initiates the Decision Engine to deploy S1.

7. The Decision Engine accesses the service description file of S1. From the service
description, the Decision Engine learns, the class of the service. To motivate this
example, let us assume that S1 is a premium service.

8. The Decision Engine consults from the Monitored Data the latest status of the
available resources.

9. On the basis of the service description of S1, the Decision Engine selects a decision
deployment algorithm from a repository, provides it with the QoS specification and
the current status of resources of the HS nodes and executes it.

10. The decision deployment algorithm outputs the name of a candidate HS node to
host an instance of S1. For the sake of this explanation, let say the output is HS_1.

11. The Decision Engine accepts the output, retrieves the image of S1 and composes a
deployment description text file.

12. The Decision Engine sends both, the image of S1 and the deployment description
file to the Service Execution component of the Hotspot selected, to HS_1 in this
example.

13. The Service Execution under the control of SEG_1 creates an instance of S1.

14. S1 responds to the End-user.

It is worth emphasizing the service migration platform operates in reactive mode in the
sense that the deployment of the instance is based on the current status of the resources
(point 8 and 9). No image pre-fetching takes place.

4.1.4 Decision engine algorithms and interfaces

The Decision Engine includes ancillary functions and decision making functions that
implement the decision making algorithms. The ancillary functions help in the
manipulation of the about resource consumption, specification about services,
specification of service deployment and so on. The decision making algorithms are the
code that decide on service deployment.

17

To illustrate the point, we will show examples of both ancillary functions and actual
algorithms. We will show their usage in Section 8.

In this implementation, we use json objects, namely json dictionaries, to format
information about the status of the resources of the Hotspot nodes. In this order, each
Monitoring Agent collects the status of its local resources, produces a json object (json obj
with monitored data) and presents it to the Monitoring Agent. The Monitoring Agent
aggregates these objects into a single json obj with aggregated monitored data which is in
fact a list of json obj with monitored data objects (a list of json dictionaries).

The following code is the skeleton of the json obj with monitored data that we use for
collecting information about the status of a Pi. Observe that it can have zero or more
containers. In the following snippets of Python code, we use the variable json_lts_dict (list
of json dictionaries) to hold the json obj with aggregated monitored data.

pi_status_default= {
Identification of the Hotspot node controlled by a SEG
 'PiID': 'ID',
 'PiIP': 'IPaddress',

#Hard configuration of the Hostpot node controlled by a SEG
 'hardResources':
 {'cpu': 'cpuType',
 'mem': 'MemorySize,
 'disk': 'diskSize'},
#Soft configuration of the Hostpot node controlled by a SEG
 'softResources': {'OS': 'OperatingSystemType},
 'resourceUsage': {'cpuUsage': 'HostCPUusage',
 'cpuLoad': 'HostCpuLoad,
 'memUsage':'HostMemoryUsage},
#Resources consumed by containers instantiated in the Hotspot controlled by a SEG.
 'containers':
 [
 # Resources used by first container
 {'id': 'containerID',
 'cpuUsage': 'containerCpuUsage',
 'memUsage': 'containerMemoryUsage',
 'name': 'nameOfTheServiceInContainer',
 'status': 'runningTimeOfTheContainer',
 'image': 'nameOfImageOfContainer’,
 'port_host': 'portNurOfEdgeNode',
 'port_container': 'portNumOfContainer'},

 # Resources used by second container
 {'id': 'containerID',
 'cpuUsage': 'containerCpuUsage',
 'memUsage': 'containerMemoryUsage',
 'name': 'nameOfTheServiceInContainer',
 'status': 'runningTimeOfTheContainer',
 'image': 'nameOfImageOfContainer’,
 'port_host': 'portNurOfEdgeNode',
 'port_container': 'portNumOfContainer'},

 # More containers can be included in the list
]}

The following functions are examples of ancillary functions that we have implemented.

18

• get_num_of_containers_of_pi(): A Pi used for realizing a hotspot can host the
execution of zero or more containers. This function produces the number of
containers currently running in a Pi.

• get_pis_with_cpuLoad(): The Pi can experience different levels of cpu load. This
function produces the current cpu load of all the Pis and sort them is increasing g
order.

• get_pi_cpuLoad(): This function produces the current cpu load of a given Pi.

• get_pis_with_min_cpuLoad(): To decide on deployment of containers, it is useful
to identify the Pi that is currently less loaded. This function produces the ID of such
a Pi. Note that the Pi is not necessarily unique, there might be one or more of them
experiencing the same load. The function selects one of them arbitrarily.

• selectHost_to_deploy_firstInstance(): When the first instance of a service is to be
deployed a hotspot needs to be selected on the basis of the requirements of the
services and the current status of the hotspot that can potentially host the
instance. This function produces the ID of a Pi that can potentially host the
instance.

• try_localReplication_of_additionalInstance(): Some times it is convenient to deploy
additional instances in the same hotspot where a previously deployed instance is
already running, provided that the hotspot has enough resources to host another
instance, in the contrary, a remote replication should be applied. This function
determines whether an additional instance can be deployed locally (that is, in the
same Pi).

5 DTN framework

The architecture of the DTN framework is explained at large in the D3.1 deliverable [1]. In
this section we present only a summary of its functionality with focus on the interfaces
that the DTN framework offers to other modules, in particular, to the Service Migration
Platform.

5.1 Architecture and functionality of the DTN framework

The DTN framework enhances the UMOBILE architecture with a delay tolerant protocol
(Delay Tolerant Networks-DTN) that can be activated (manually or automatically) when
the conventional ones (for example TCP/IP) fail due to network problems. To implement
delay tolerance, the DTN framework takes advantage of caching resources. The DTN
framework seems to be suitable for dealing with QoS parameters related to availability
and not particularly convenient to address stringent QoS requirements related to timing
such as response time and latency. Essentially, on it own, DTN can be used to enhance the
operation of the network by means of the following facilities:

1 less-than-best-effort service: This class of service can be used to provide
communication to services with relaxed response time requirements.

2 Reliable communication service: This class of service can be used in situations
where service availability is essential (e.g. in emergency cases).

19

3 Finer-grained services, by opting in and out of the above.

4 A congestion control mechanism: Communication over the DTN protocol can be
activated reactively to off load traffic main communication links suffering from
congestion.

5 A congestion avoidance mechanism: proactively scheduling traffic to reach its
destination only when links are underutilized.

5.2 DTN integration interfaces

The DTN forwarding mechanism can be employed in cases when one or more of the
following conditions are met:

• There exist expected or unexpected connectivity disruptions in some parts of the
network.

• Reliability must be ensured to guarantee the delivery of large packets in cases
when the small packet size of NDN causes unwanted delays (e.g., in the case of a
mobile node used as a data mule).

• There is congestion in the network.

• A less-than-best-effort service class must be used.

Observe that the integration of the service migration platform and the DTN framework is
facilitated by the naming system of the NDN network: Interest packets with DTN prefixes
in their names are forwarded through DTN interfaces. The service provider can activate it
(see Figure 23) by means of executing procedures to make Hotspots DTN aware. These
procedures involve the configuration of the FIB (Forward Interest Base) of the Hostspots
to set DTN faces and can be done either programmatically by the Service Manager or
manually by the service provider.

In this order, if one or more of the above conditions are met, the Service Migration
platform can leverage the DTN forwarding mechanism by employing the corresponding
naming scheme that is tied with the DTN interface, based on the node configuration. This
way, any node configured to support the DTN forwarding mechanism, will forward
packets with the DTN-related naming scheme using the DTN interface. It must be noted
that in case a node is not DTN-enabled, it will fall back to the typical forwarding
mechanisms that use TCP or UDP.

6 Flowlet congestion control

The architecture of Flowlet is explained at large in the D4.1 [9] and D4.2 [10] deliverables.
In this section, we present only a summary of its functionality with focus on the interfaces
that the framework offers to other modules, in particular, modules related to QoS
mechanisms.

6.1 Architecture and functionality of the INRPP congestion control

As discussed in D4.1 [9] and D4.2 [10] one can use congestion control mechanisms to

20

prevent congestion problems that might result in packet loss, latency and low throughput.
Congestion control mechanisms address QoS by means of manipulating information at
network level such as monitoring of queues with subsequent manipulation of network
packet within the routers. Examples of these techniques are traffic management by means
of end-to-end or hop-by-hop congestion control.

Within the UMOBILE project, we aim to design and evaluate the In-Network Resource
Pooling Protocol (INRPP), which pools bandwidth and in-network cache resources in a
novel congestion control framework to reach global fairness and local stability. There are
two main uncertainty factors that fuel fear of instability and with which any reliable
congestion control protocol has to deal with: i) the input load factor: the network does not
know how much data the senders will put in the network next, and ii) the demand factor:
there might be excessive demand for bandwidth over some particular area/link. TCP, for
instance, defends against the input load factor through the Additive
Increase/Multiplicative Decrease transmission model, while it deals with the demand
factor by adopting the “one-out, one-in" packet transmission principle (only when a
packet gets out of the network is a new one allowed in). Those two mechanisms are
closely linked and interrelated and lead to TCP's defensive behaviour by effectively
(proactively) suppressing demand. In this essence, the end-points have to speculate on
the available resources along the end-to-end path and move traffic as fast as the path's
slowest link.

Figure 5: Left: e2e Flow Control: Bandwidth is split according to the slowest link on the path. Right: INRPP:
Bandwidth is split equally up to the bottleneck link (global fairness). Detour applies to guarantee local stability.

Given the single-path nature of TCP, moving traffic according to the path’s slowest link
guarantees global stability (i.e., stability along the e2e path through e2e rate-adaptation).
Fairness on the other hand, is guaranteed locally (i.e., based on the capacity of the
bottleneck link). We argue against this relationship and in the spirit of INRPP propose
that: i) stability should be local, and ii) fairness should be global. Local stability demands
that the node before the bottleneck link takes appropriate action when conditions
deteriorate. Global fairness on the other hand requires that all resources up to and
including the bottleneck link are shared equally among participating flows. Consider two
flows in the topology of Figure 5. According to the e2e flow control of TCP (left part), the
flow that traverses the bottleneck link (2-4) would achieve 2Mbps throughput (global
stability), while the second flow would dominate the shared link (1-2) and achieve 8Mbps

throughput. According to Jain’s Fairness Index [11], given by 𝐹 =
∑(𝑇)

2

𝑛∑(𝑇2)
, where T is each

flow’s throughput and n is the total number of flows, the system fairness in this case is

21

0.73. In case more than one flows traverse the bottleneck link (2-4), they would share
equally the available bandwidth (local fairness). In contrast, according to the global
fairness, the shared link (1-2) is split equally among the two flows. Node 2 has two
options in this case: i) find alternative routes to reach node 4 (local stability), or ii) notify
node 1 to reduce its sending. In the topology of Figure 5, node 3 can accommodate the
extra 3Mbps. In this case, Jain’s index indicates perfect system fairness equal to 1.

Taking profit of the hop-by-hop design and the caching capabilities inherent in the NDN
networks, or adding caches (i.e., temporary storage) and breaking the end-to-end
principle in TCP/IP networks, we argue that the demand factor can be tamed, providing
global fairness and local stability. Given this functionality of in-network storage, INRPP
comprises three different modes of operation:

1. push: content is pushed as far in the path as possible in an open-loop, processor
sharing manner, based on the path's hop-by-hop bandwidth resources to take
advantage of under-utilised links;

2. store and detour: when pushed data reaches the bottleneck link, the excess data is
cached and simultaneously forwarded through detour paths towards the
destination;

3. backpressure: if detour paths do not exist or have insufficient bandwidth, the
system enters a backpressure mode of operation to avoid overflowing of the cache.
During the backpressure mode, the nodes enter a closed-loop mode, where an
upstream node sends one data packet per one received ACK to the backpressuring
downstream node.

Note that congestion control mechanisms are based to the optimisation of network
resource usage, consequently, their effectiveness depends on and is bound by the amount
of resources available. In other words, congestion control mechanisms can do nothing
when the network resources are already exhausted. In that case, application-level QoS
mechanisms are required.

In summary, INRPP congestion control features the following characteristics to provide
QoS network-level mechanisms:

22

• Hop-by-hop congestion control using in-network caches as a temporary custodian
to alleviate temporary congestion without slowing down the source.

• Use of in-network multipath, being able to use unused bandwidth in one-hop
detour paths (i.e., paths that can be used to reach the next node only with a
difference of a one hop more).

• It provides network stability using backpressure mechanisms and perfect fairness.

• Improves flows completion time and better use of resources.

• Using differentiated level services in the caches, we add priorities to deliver
packets from the temporary custodian cache to the link at different rates.

6.2 INRPP integration interfaces

We envision to operate Flowlet as a mechanism that can be activated by the Service
Manager (see Figure 23) as an executable file. Once activated the process can remain
operating in the background until the Service Provider instructs the Service Manager to
stop it.

The INRPP congestion control can be used along with predefined priorities in order to
transfer critical services from the service repository to any point of the network with the
minimum transfer time and reduce the latency that the user perceives when instantiating
the service.

• There exist expected or unexpected connectivity disruptions in some parts of the
network.

• Reliability must be ensured to guarantee the delivery of large packets in cases
when the small packet size of NDN causes unwanted delays (e.g., in the case of a
mobile node used as a data mule).

• There is congestion in the network.

• A lower-than-best-effort service class must be used.

Observe that the integration of the service migration platform and the INRPP framework
is, as with the integration with the DTN mechanism, facilitated by the naming system of
the NDN network: Interest packets with specific prefixes in their names are forwarded by
INRPP with different priorities. For example:

• Premium service: /premium/service1/image1

• Best-effort service: /be/service2/image2

In case of a service using a DTN prefix, as stated in the previous section it falls back to
normal best-effort service, being totally agnostic for INRPP and treated accordingly for
DTN enabled devices. Therefore, INRPP can be considered as a mechanism that is used for
in-path devices between DTN-enabled end-points at a lower level than DTN, but both are
considered network-level QoS mechanisms.

23

7 Evaluation of QoS-related parameters

When the service migration platform is used as a reactive service migration mechanism it
relies on the Decision Engine to make decisions on the deployment of service instances.
The responsibility of the Decision Engine is to prevent the violation of the QoS parameters
of the services by means of deployment of additional instances of services showing signs
of exhaustion, for example, of services showing signs of unacceptable latencies. For this to
be possible, the Decision Engine needs accurate knowledge of the key parameters that
determine the level of QoS of services and their critical values (thresholds). Also, the
Decision Engine needs to weight the expected benefits against the cost of the deployment
of additional instances of the service. We have observed that these parameters can be
categorized into:

• The current status of the hosting hardware,

• The current status of the existing instances of the service and

• The particularities of the service.

Once the parameters and their critical values are identified, they can be included as input
to the algorithms of the Decision Engine and in the list of the parameters that the
Monitoring Agents need to monitor. It is worth explaining that in the implementation of
the service migration platform we take a service-side approach in the sense that the
monitored data is collected exclusively from within the resources under the control of the
service provider. We do not rely on support from the end-users. For example, we do not
rely on information provided by end users to determine response time or deploy dummy
users to probe the services. These alternatives fall outside of our research interest and are
not discussed further.

Some of these parameters can be retrieved from the documentation, for example, from
the specification of the services. However, the retrieval of others is far more problematic
as it demands actual experimentation. We will explain now a series of laboratory
experiments that we have conducted in pursuit of this endeavour.

7.1 Experiment settings

In this section we describe the configuration of the software and hardware components
that we use in our experiments.

HSs: To implement the HS nodes we use Raspberry Pi 3 (RPi-3). The Pis used in our
experiments run the Hypriot OS Version 1.2.02 in default mode that allows containers to
compete for the RPi-3 resources. To implement the virtualized services, we use Docker
containers [11,12].

Services: The services that we use in the deployments are web services. They help us to
demonstrate how the configuration and the implementation of an application impact the
QoS as perceived by the end users. We have selected four of the most popular web servers
from the docker hub3. Table I shows the images that we used in the experiments.

2 https://blog.hypriot.com/downloads/
3 https://hub.docker.com/explore/

Image name Image size

24

Table 2: Sizes of Dockerized images of four popular web services.

In accordance with the amount of bytes involved in the response, we regard hypriot/rpi-
nano-httpd, hypriot/rpi-busybox- httpd and armhfbuild/nginx as light weight web servers.
The three of them deliver a single html document that consists of html text of 300 bytes
with a link to a local jpeg image of 80 kB. We deliberately use a small html document to
reduce the memory consumed by the document and leave it entirely at the disposition of
the Docker containers. On this account, we regard gordonff/rpi-tomcat as a heavy weight
web server since its front page consists of multiple items (e.g., photo, external links, java
web applications).

Apache benchmarking (ab) tool4: Our experiments involve the generation of artificial
sequential http requests. We generate them with the Apache Benchmarking (ab) tool run
in a laptop (lenovo E560: Intel Core i5-6200U 2.3GHz, 8GB RAM, Ubuntu 14.04) that we
use as a test machine. By sequential http requests we mean that a user places a request
and waits for the arrival of the corresponding response. Upon the arrival of the response
the user proceeds immediately to place another request. We use the ab tool to place
concurrent http request to web services in the following manner. We create linux shells in
the Lenovo computer and run the ab tool configured to simulate different numbers of
concurrent users. For example, a shell with the ab tool simulating a single user is
equivalent to a single request arriving at the web service, a shell with the ab tool
simulating two concurrent users is equivalent to two requests arriving concurrently at
the web service, a shell with the ab tool simulating 100 concurrent users is equivalent to
100 requests arriving concurrently at the web service.

7.2 Impact of the number of concurrent requests on QoS

The aim of these experiments is to determine how many concurrent requests a given
service can handle without compromising response time. This value is application
dependent. We examine the response time of the web services of Table I instantiated as
Docker containers in the Hot Spot nodes and exposed to different numbers of concurrent
requests.

We configured each of the four web servers with the necessary libraries to serve a single
web page and hosted each of them in its own container. We deployed the four resulting
containers in four RPis (one each) and exposed each of them separately to a total of
10,000 http requests.

We generated the http request from the Apache ab tool in the following manner. We
created linux shells in the test machine. In each shell, we run an instance of the ab tool

4 http://httpd.apache.org/docs/current/de/programs/ab.html

hypriot/rpi-nano-httpd 88Kbytes

hypriot/rpi-busybox-httpd 2.16 Mbytes

gordonff/rpi-tomcat 251 Mbytes

armhfbuild/nginx 368 Mbytes

25

and configured it to create a number of concurrently active users: each user generated a
number of sequential http requests.

Under this configuration, we conducted individual response time stress tests on each
container increasing the number of users from 5 to 1000. In this order, in a five
concurrent users experiment, each user generates 10000/5=2000 requests sequentially,
in a 100 concurrent users experiment each user generates 10000/100=100 sequential
requests only, and so on. It is worth recapping that the number of concurrent users
determines the number of concurrent http requests received by the container. For
instance, with 1000 concurrent users, the container receives and handles 1000 requests
concurrently. We measured the success rate at the test machine by comparing the
number of http requests sent by the ab tool and the number of responses received. Figure
6. shows the average number of http requests successfully served by the nano, busybox,
nginx and tomcap containers under different concurrent user levels. We repeated each
experiment for 30 times.

Let us examine the nano container firstly (red bars), from five concurrent users onwards,
it exhibits a success rate of 99.98% as it fails to respond to some of the 10000 requests.
The success rate significantly decreases to 24.59% when the number of concurrent users
is increased to 100. The performance of the busybox container (white bars) is similar to
that of the nano container. Busybox success rate falls to 34.85 % when the number of
concurrent user level increases to 500 users. As for the nginx (blue bars) and tomcat
(black bars) containers, both can serve up to 1000 concurrent users with a success rate of
100%.

Figure 6: Average success rate of four containers.

The results show that nano containers cannot serve more than five concurrent users with
acceptable response time. This parameter needs to be taken into account by the Decision

26

Engine which might decide to deploy additional instances of the containers to avoid
compromising the QoS. The creation of additional instances is reasonable since these
containers consume only a few Kbytes of memory of the underlying hardware. In
previous work, we have proven that a single RPi can run more than 2400 instances of the
nano container simultaneously.

7.3 Impact local container replication

In some situations, it is convenient to deploy additional instances of a service to share the
load of existing ones. The three experiments that we discuss in this section were
performed to investigate how many replicas a Hot Spot node can handle without
exhausting its resources (See Figure 7). This parameter is crucial for Decision Engine. We
use the ab tool to create clients that independently send a number of sequential http
requests against web services.

Figure 7: Experiment settings.

In the 1Con-1Pi experiment, we instantiated a single container in a RPi and a linux shell in
the test machine. In the shell, we configured the ab tool to simulate 100 clients instructed
to send 100 http sequential requests each, to retrieve an html document from the
container. The 100 clients operate concurrently, consequently, at any time, the container
has 100 requests to processed concurrently. By the end of the experiment, the container
would have processed 100x100= 10000 requests in total.

In the 2Con-1Pi experiment, we instantiated two containers in the RPi and created two
linux shells in the test machine. In the first shell, we configured the ab tool to simulate 50
clients instructed to send 100 http sequential requests each, to retrieve an html document
from the S1 container. The second shell was configured similarly but targeted the S2
container. Due to clients concurrency, at any time, each container has 50 requests to
process. Like in the previous experiment, by the end, the RPI would have processes 10000
request in total (5000 by each container).

In the 4Con-1Pi experiment, we instantiated four containers in the RPI and created four
linux shells in the test machine. In the first shell we configured the ab tool to create 25
clients instructed to send 100 http sequential requests each to retrieve an html document
from the S1 container. Consequently, S1 received 2500 requests in total. The second, third

and fourth shells were configured similarly but targeted the S2, S3 and S4 containers,

respectively. Due to the clients’ concurrency in each shell, at any time, each container has
to process 25 concurrent requests. Like in the two previous experiments, by the end, RPi
would have received 10000 request in total (2500 by each container).

AB	client

S1

S2

S3

S4

S1 AB	client

S1

S2

AB	client

1Con-1Pi 2Con-1Pi 4Con-1Pi

Test machineTest machine Test machineRPI

RPI

RPI

27

As shown in Figure 8 -13 , we conducted the 1Con-1Pi, 2Con- 1Pi and 4Con-1Pi
independently with the busybox, nginx and tomcat containers with aim of measuring how
the resources of the RPI are impacted by the local replications of containers. We left out
nano container because its inadequacy to support large numbers of concurrent clients
renders it unsuitable for these experiments. The results demonstrate that the CPU
utilization, CPU load and memory usage of the RPi increase significantly when the number
of containers increases. This is because the RPi allocates independent resources (for
example, memory buffers and CPU cycles) to each container to handle the communication
with the clients. As a result, the creation of an additional container replicates the
consumption of RPi resources. This results need to be taken into consideration by the
Decision Engine. For instance, in Figure 8, the CPU utilization of busybox container in the
1Con-1Pi experiment exhibits a sharp increase after 10s. This is a sign of exhaustion of
the container. It might decide to deploy an additional instance of the container before the
QoS is compromised.

Figure 8 : CPU utilization of busybox on the RPi. Figure 9: CPU load of busybox on the RPi.

5 10 15 20

0
2
0

4
0

6
0

8
0

1
0

0

Time (s)

C
P

U
 U

ti
li
s
a

ti
o

n
 (

%
)

5 10 15 20

0
2
0

4
0

6
0

8
0

1
0

0

5 10 15 20

0
2
0

4
0

6
0

8
0

1
0

0

1Con−1P

2Con−1Pi

4Con−1Pi

5 10 15 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Time (s)

C
P

U
 l

o
a

d

5 10 15 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

5 10 15 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

1Con−1P

2Con−1Pi

4Con−1Pi

28

Figure 10: CPU utilisation of nginx on the RPi. Figure 11: CPU load of nginx on the RPi.

Figure 12: CPU utilization of tomcat on the RPi. Figure 13: CPU load of tomcat on the RPi.

In practice, there will be several containers running in the same physical host sharing the
common pool of resources. Because of this, the information about the status of the RPi’s
resources is not sufficient to program the Decision Engine. In addition to that, the
Decision Engine needs to be aware of the status of resources consumed by each container.
The results shown in Figure 14, 15 and 16 which compare the CPU utilization of three
containers with different configurations, support our argument. The CPU utilization of all
three containers fall to around 50% and 75% when two (2Con-1Pi) and four (4Con- 1Pi)
containers are deployed in the RPi. The three plots show that each service exhibits
different level of exhaustion. The CPU utilisation inflicted on a single nginx container is
only about 60%; this finding indicates that a single instance of nginx can handle the load.
In contrast, the busybox container requires four containers to keep CPU utilization under
50%. The tomcat containers exhibit instability over all experiments that drove CPU

2 4 6 8 10 12 14

0
2
0

4
0

6
0

8
0

Time (s)

C
P

U
 U

ti
li
s
a

ti
o

n
 (

%
)

2 4 6 8 10 12 14

0
2
0

4
0

6
0

8
0

2 4 6 8 10 12 14

0
2
0

4
0

6
0

8
0

1Con

2Con

4Con

2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

Time (s)

C
P

U
 l

o
a

d

2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1Con

2Con

4Con

0 50 100 150 200

0
2
0

4
0

6
0

8
0

1
0
0

Time (s)

C
P

U
 U

ti
li
s
a

ti
o

n
 (

%
)

0 50 100 150 200

0
2
0

4
0

6
0

8
0

1
0
0

0 50 100 150 200

0
2
0

4
0

6
0

8
0

1
0
0

1Con

2Con

4Con

0 50 100 150 200

0
2
0

4
0

6
0

8
0

1
0
0

Time (s)

C
P

U
 l

o
a

d

0 50 100 150 200

0
2
0

4
0

6
0

8
0

1
0
0

0 50 100 150 200

0
2
0

4
0

6
0

8
0

1
0
0

1Con

2Con

4Con

29

utilization to the extremes (over 100%).

Figure 14: CPU utilization of busybox containers. Figure 15: CPU utilization of nginx containers.

Figure 16: CPU utilization of nginx containers.

7.4 Local vs Remote Container Replication

We conducted experiments to understand how exhausted resources impact the QoS
perceived by clients, we focused on response time. In addition to the three experiment
configurations mentioned in the previous section (local replication), we include now
configurations 2Con-2Pi and 4Con-4Pi aimed at showing the impact of container
replication on alternative Pis (remote replication). In experiment 2Con-2Pi, we
instantiated two containers (S1 and S2) on two RPis (RPi1 and RPi2)— one container

each. In the test machine, we created a linux shell where we used the ab tool to create 50

0 5 10 15 20 25 30

0
5
0

1
0
0

1
5
0

2
0

0

Time (s)

C
P

U
 U

ti
li

z
a
ti

o
n

 (
%

)

1Con−1Pi

2Con−1Pi

4Con−1Pi

0 5 10 15 20 25

0
1
0

2
0

3
0

4
0

5
0

6
0

Time (s)

C
P

U
 U

ti
li

z
a
ti

o
n

 (
%

)

1Con−1Pi

2Con−1Pi

4Con−1Pi

0 50 100 150 200 250 300 350

0
1

0
0

2
0

0
3
0
0

4
0
0

Time (s)

C
P

U
 U

ti
li

z
a
ti

o
n

 (
%

)

1Con−1Pi

2Con−1Pi

4Con−1Pi

30

clients operating concurrently. Each of them sent 100 sequential requests to S1. Thus at

any time, S1 had 50 requests to process. We associated S2 to another shell similarly. The

4Con-4Pi experiment is similar but aimed at reducing the level of client concurrency. We
created four containers on four RPis (one each). Each container was exposed only to 25
concurrent clients instructed to generate 100 sequential requests each. To setup the
exper- iments, we connect four RPis and the test machine with a D-Link DES-1008D
switch via ethernet cable. The average round trip time between test machine and each RPi
is 5ms.

Figure 17: Response time of the busybox web server. Figure 18: Response time of the nginx web server.

Figure 19: Response time of the tomcat web server

1Con−1Pi 2Con−1Pi 4Con−1Pi 2Con−2Pi 4Con−4Pi

0
2

0
0

4
0
0

6
0

0
8

0
0

1
0

0
0

1
2
0

0

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

1Con−1Pi 2Con−1Pi 4Con−1Pi 2Con−2Pi 4Con−4Pi

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

1Con−1Pi 2Con−1Pi 4Con−1Pi 2Con−2Pi 4Con−4Pi

0
1

0
0

0
2

0
0

0
3

0
0
0

4
0

0
0

5
0
0

0

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

31

Figure 17, Figure 18 and Figure 19 show the average response time of web containers
with different service deployment configurations. The computation load of 2Con-1Pi and
4Con-1Pi are analytically reduced by 50% and 75% compared to a single container case
(1Con-1Pi) as a number of concurrent users placing the request against each container is
divided to 50 and 25 respectively. However, in both configurations, the end-users cannot
achieve better response time. In case of busybox and nginx, the end-users achieve almost
similar results for all three configurations. As for the tomcat, the average response time is
slightly increased when more containers are replicated in the same RPi. On the other
hand, applying the remote replication strategy (2Con-2Pi and 4Con4-Pi) significantly
improves the performance of response time. For instance, in case of busybox container,
the average response time is improved up to 55.01% (2Con-2Pi) and 77.25% (4Con-4Pi)
compared to 1Con-1Pi case. Similar tendency is also applied to nginx and tomcat
containers.

The implication behind these results is related to resource exhaustion of the RPi. The
measurements of CPU utilisation and CPU load are presented in Figure 20 and Figure 21.
As shown in Figure 20, the deployment of two and four containers in a single RPi (2Con-
1Pi and 4Con-1Pi, respectively) cause higher CPU utilization and CPU load than the
deployment of a single container (1Con-1Pi). However, when the containers are deployed
in another RPi (2Con-2Pi and 4Con-4Pi), the CPU usage gradually decreases. The
experiment with the tomcat container is an example of extreme resource exhaustion
where the CPU is fully utilized and CPU load increases up to 70. Such a load exhausts the
CPU of the RPi and severely affects its average response time which reaches up to 1847
ms (4Con-1Pi). The Decision Engine needs to be aware of these parameters and remedy
the situation, for example, by deploying an additional instance of the container in another
RPi to take the excessive load.

Figure 20: CPU utilization of a RPi under stressing
loads.

Figure 21: CPU load of a RPi under stressing loads.

7.5 Container replication cost

Deployment of additional instances can help to meet QoS requirements but at a cost. We

busybox nginx tomcat

C
P

U
 u

ti
liz

a
ti
o
n

(%
)

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1Con−1Pi 2Con−1Pi 4Con−1Pi 2Con−2Pi 4Con−4Pi

busybox nginx

C
P

U
 l
o

a
d

0
1

2
3

4

1Con−1Pi

2Con−1Pi

4Con−1Pi

2Con−2Pi

4Con−4Pi

tomcat

C
P

U
 l
o

a
d

0
2

0
4

0
6

0
8

0
1
0

0

32

have identified two: network traffic and instantiation time. The network traffic cost is the
traffic generated by the transfer of the service image from the Service Repo to the Hotspot
node (see Figure 4). It mainly depends on the size of service image and the bandwidth of
network link. There are several approaches to estimate this cost, since the issue fall
outside the scope of this deliverable we leave it aside and focus on instantiation time. The
instantiation cost time is the time that that it takes to have a newly deployed instance
ready for serving. In our experiments, we measured the booting time of the docker engine
on a RPi and the time it takes to create a container. Figure 22 shows the service
instantiation cost of the four web server containers. It takes about 3.37 s to boot up a
docker engine in a RPi 3. This cost is zero when the Docker engine is already running in
the RPi. As for the containers, it takes about 1.42, 1.46, 1.44 and 1.48 s to instantiate the
nano, busybox, nginx and tomcat web server containers, respectively.

Figure 22: Container replication cost.

8 Fulfilment of QoS requirements

To recap, the service provider is responsible for deploying services with specific QoS
requirements. The QoS requirements associated to services result from negotiations and
contractual agreements drawn between the Service Provider and the Service Producer
(see Figure 1). The Service Manager is the tool that the Service Provider has at his
disposition to help him fulfill the QoS requirements associated with his services. He can
use it to activate his QoS mechanisms. Figure 23 shows the relationship between the
Service Manager and each mechanism. It also shows potential collaboration relationship
among the mechanisms.

nano busybox nginx tomcat

Containers

T
im

e
 (

s
)

0
1

2
3

4
5

start docker spin up container

33

Figure 23: The Service Manager and its QoS mechanisms.

As shown in the figure, the Service Manager can activate each of the mechanisms to work
individually; for example, it can activate the Service migration platform and nothing else.
Alternatively, it can activate two of them and make them collaborate; for example, it can

activate the Service migration platform and the DTN framework and make them
collaborate. The Service Provider can devise different combinations to meet different QoS

parameters associated to different classes of services.

Table 3 shows some examples. In the table, SM, DTN and INRPP stand for Service
Migration platform, DTN framework and INRPP congestion control, respectively.

Classes of
services

QoS parameters

Response time Availability Num. of packets
loss

premium SM + DTN +
INRPP

SM + DTN + INRPP INRPP

best-effort [SM + DTN +
INRPP]

[SM + DTN +
INRPP]

[INRPP]

less-than-
best-effort

DTN DTN INRPP

Table 3: QoS mechanisms used for supporting services of different classes with specific QoS parameters.

Each service is expected to meet thresholds of a set of QoS parameters such as response
time, availability, number of packets loss, deployment time, etc. The value of a threshold
varies from service to service, in this manner some services will demand low response
time (for example, below 3 sec) whereas others will tolerate arbitrarily long response
times. The same holds for availability, important services will demand high availability
(of the other of 99.99) whereas other services will tolerate long down times (say, several
hours).

A service with a stringent requirement of a QoS parameter will be classed as premium
with respect to that specific parameter. For example, a service that is required to be

34

deployed within seconds of receiving a request will be classed as premium regarding
deployment time. In contrast, a service that is expected to be deployed within 24 hrs of
being requested will be classed as best effort regarding deployment time. It is worth
emphasizing that a service with stringent deployment time does not necessarily has
stringent response time. Equally important, a QoS mechanism that helps satisfy a given
QoS parameter is not necessarily adequate to satisfy another. This is why we classify
services as premium, best-effort and less-than-best-effort regarding specific QoS
requirements. To mention a specific example, we can imagine an emergency service that
is expected to be deployed within seconds (premium deployment time) after a disaster
strike, offer a response time of 2-3 seconds (premium response time) and remain
operational for as long as necessary (premium availability).

As a second example, we can think of a service used to deliver news in a remote rural area
for free. Such a service is likely to be negotiated (between the service owner and the
service provider) with relaxed availability requirements (less-than-best-effort) and no
notion of response time or deployment time. To explain the potential use of the QoS
mechanisms as shown in

Table 3, let us assume that the service provider is operating a network that is prone to
suffer from congestions, partitions and unpredictable and arbitrarily long delays. Let us
examine response time requirements firstly. We define response time as time perceived
by the and-user. It is measured as the time elapsed between the placement of a request
and the arrival of the last bit of the corresponding response. As suggested by the last row
of the table, to meet relaxed response time requirements (less-then-best-effort class) the
service provider would probably activate DTN alone. The service provider will resort to
DTN to handle extreme situations where the end-users and the service are physically
separated due to a total absence of communication infrastructures or temporary network
partitions. In these situations, DTN will be used to eventually deliver requests/responses
placed by end-users against the service, irrespectively of the locations of the service and
the end-users. DTN can be deployed in a mobile device (for example a UAV) capable of
carrying data between the two communicating parties.

At the other end of the spectrum, to support the operation of a service with stringent
response time requirements (premium class), the service provider would activate SM,
DTN and INRPP. INRPP will be used to remedy potential congestion problems that can
impact response time. To reduce response time, SM will be used to deploy the service as
close as possible to the end-users. In extreme situations where the end-users are left
isolated in a network segment due to a network partition or where communication
infrastructure is absent, DTN will be used to carry a binary image of the service and
deploy it where the users are and instantiate it under the assurance that proximity to end-
users will result in short response times.

Let us examine availability requirements now. Availability is defined as the readiness to
deliver a correct service. Availability is measured as the percentage of the time that the
service is delivering the expected service. Consequently, availability depends on the
outage duration: availability= ((agreed service time – outage time)/agreed service
time)x100. To support the operation of a service with availability requirements classed as
less-than-best-effort, the service provider would probably activate DTN and nothing else.
In scenarios where the communication infrastructure is absent or temporarily impaired
by a network partition, DTN can be used to transport data (requests placed against the

35

service and responses sent to the end-users) between the two communication parties and
make the service to remain available. Due to the long response time, the service outage
will be extremely long and cause a low availability, but for a less-than-best-effort class,
this availability should be acceptable. As shown in the table, services that require high
availability (say, in the region of 99%) are very likely to be classed as premium services
and supported by the activation of SM, DTN and INRPP operating in collaboration. As
before, in scenarios with no network infrastructure or impacted by network partitions
DTN can be used either as a transport (mule) mechanism to ferry requests/responses
between the end-users and the service or alternatively to transport an image of the
service, download it where the end-users are and instantiate it to make the service
available. A parameter that impacts the availability of service is the time it takes to
deploy it. Recall that to deploy a service, its image needs to be transferred from a
repository (or cache) to the hotspot where it is instantiated. The transfer time is
determined mainly by the size of the image of the service and the congestion of the
network used for transferring the image. To minimize transfer time of services with
premium availability requirements, the service provider is likely to activate his INRPP
and instruct it to differentiate classes of services and prioritize the transfer of services
classed as premium. A thorough analysis of this measure is discussed in the example of
Section 8.3.2.

Finally, let us examine packet loss requirements. A packet is considered lost if it is
dropped by an intermediate node before the packet reaches its final destination. Packet
loss is measured as a percentage of packets lost with respect to packets sent. Packet loss
rate is particularly high when the network is congested unless congestion control
mechanisms are in place. As shown in
Table 3, to keep the rate low for services classed as premium regarding number of packet
loss, the service provider is likely to activate INRPP alone. Packet loss is a network issue
that can be naturally handled by QoS mechanisms such as INRPP. One can argue that SM
can be used to reduce the rate of packet loss by re-deploying the service as close as
possible to the end user to reduce network traffic, though we do not preclude this
alternative we regard it as an indirect measure to address the problem at hand—this is
why we do not include SM in the fourth column. Regarding services classed as less-than-
best-effort regarding number of packets loss, the service provider might, as a precaution
activate INRPP. It is worth clarifying that there are no technical difficulties to activate
INRPP as a precaution measure in the second and third columns of the less-than-best-
effort as well. We did not include it in the table because this measure is optional. Similarly,
and as mentioned in Section 5, one can rightly argue that DTN can be used as a congestion
control mechanism (to carry some traffic load of low priority) as well to prevent packet
loss of premium services. We did not include it in the table because INRPP is more
adequate than DTN for addressing this issue.

This discussion is meant to give ideas about how the QoS mechanisms can be used. The
three QoS parameters that we use in the discussion are only examples. There are others
parameters (for example, throughput and time to repair) that are likely to demand
different combinations of the QoS mechanisms. Observe that we suggested mechanisms
for dealing with the most contrasting classes of services (premium and less-than-best-
effort). Best-effort services fall somewhere in between these two classes. As such, to
handle them, the service provider will deploy mechanisms at its discretion depending on
how he regards best-effort. For instance, he can be lenient, made no commitments

36

towards their QoS expectations and use the same QoS mechanisms as for less-than-best-
effort. On the other extreme and as suggested in the table by the parameters shown in
brackets, the service provider might regard best-effort services nearly as important as the
premium ones and deploy similar QoS mechanisms for handling them.

From the above discussion it follows that a crucial piece of information that the Service
Manager needs to know about the services under its responsibility is their classes
(premium, best-effort, less-than-best-effort) which can be retrieved from the service
description associated to each service. On the basis of this information the Service
Manager determines how to operate its Decision Engine. For instance, the Service
Manager might follow a policy that to deal with services classed as less-than-best-effort, it
launches the Decision Engine only to deploy the first instance of the service and hope for
the best. Similarly, to deal with services classed as best-effort, the Service manager, will
launch the Decision Engine to deploy the first instance of the service and occasionally, but
leniently, re-launch it to assess the situation and deploy additional instances of the service
if needed in an attempt to keep the service running smoothly. However, to deal with
services classed as premium, the Service Manager is likely to launch the Decision Engine
to deploy the first instance of the service and re-launch it frequently enough to keep track
of the operation of the running instances and deploy additional ones as needed to
guarantee its QoS. The categorization of services into discriminatory classes is also central
to the Decision Engine. Its algorithms prioritize attention in the sense that problems
related to premium services are addressed before problems related to best-effort and
less-than-best-effort services. For instance, instances of premium services are deployed
before the Decision Engine pays attention to instances of lower priority.

8.1 Handling numbers of concurrent requests with local replication

In this example, we use the service migration platform operating as a reactive service
migration mechanism. The example shows how the Service Provider can use the Service
Manager to operate individually (without support from the DTN framework or INRPP) to
meet requirements imposed on the number of concurrent requests that a service needs to
handle. The service is assumed to be of premium class.

Let us assume that the Service provider is made responsible for the provisioning of a
busybox web service for the benefit of end users located near HS_1 (Figure 4). He is
expected to honour the following QoS requirements:

• Requirement1: The service shall provide a response time no larger than 500 ms.
• Requirement2: The service shall provide availability of 99.99 %
• Requirement3: The service shall be able to handle at least 700 concurrent requests.
• Requirement4: The service shall be classed as premium service.

To comply with its obligations, the Service Provider proceeds as follows:

37

1. The Service Provider builds the Sbusybox_spec.json shown below on the basis of the
QoS requirements (Requirement1, … ,Requirement4) and experimental results of
Figure 6. From these results, he knows that the number of concurrent requests
that the busybox service can handle without showing signs of exhaustion is 500.
Likewise, from the results of Figure 17 he knows that two instances of a busybox
container created in a single Pi can offer an average response time below 200 ms.
The Service Provider includes these two parameters in the Sbusybox_spec.json file.

S_busybox= {
 'par':{
 'serviceName': 'nano',
 'imageName': 'hypriot/rpi-busybox-httpd',
 'imageSize': '88',
 'maxConReqs': '500',
 'startUpTime': '5'
 },
 'QoS':{
 'responseTime': '500',
 'availability': '99.99',
 'numConReqs": '700’
 },
'class':{
 ‘serviceClass’: ‘premium’
 }}

38

2. To deploy the first instance of the busybox service, the Decision Engine needs to
select a Hostspot that can handle it. In pursuit of this aim, the Decision Engine
executes the following algorithm:

selectHost_to_deploy_firstInstance(json_lst_dict, json_server_Spec)

json_lst_dict: json list of dictionaries with aggregated monitored data

#json_server_Spec: server specification in json

As a result, the function produces:

The host selected to deploy first instance is: SEG_1

which suggests SEG_1 to the Decision Engine.

3. As a precaution, the Decision Engine can verify the number of containers running
in SEG_1.

 get_number_of_containers_of_pi('SEG_1')

In this example, the output from the function is:

Pi identified as SEG_1 is running 0 containers

If necessary the Decision Engine can also verify the status of the Pi with SEG_1 ID
with the help the following function:

get_pis_status(json_lst_dict, ‘SEG_1’)

The output from the function is:

{"softResources": {"OS": "Linux"}, "hardResources": {"mem": "1 GB", "disk": "16 GB", "cpu": "A
1.2GHz 64-bit quad-core ARMv8 CPU"}, "resourceUsage": {"cpuLoad": "0.07", "memUsage":
"12", "cpuUsage": "0.374996785177"}, "PiID": "SEG_1", "PiIP": "192.0.0.2", "containers": [] }

39

Observe that list of containers is empty, which indicates that SEG_1 is currently
running no containers. Consequently, SEG_1 is definitely selected to host the
instantiation of the service. In addition, the Decision Engine can find out what is
the Pi with the lowest cpuLoad:

get_pis_with_min_cpuLoad(json_lst_dict)

The execution of the function above will output the following response

 PiID with min cpuLoad
PiID= SEG_1 cpuLoad= 0.01

4. Let us assume that the Decision Engine decides to deploy the first instance of the
busybox service in SEG_1. It proceeds to produce the following json obj with
deployment descriptor containing the deployment specification of the image of the
busybox service.

deploy_descriptor = {' rpi-busybox-httpd.tar':
 {'image_name':'hypriot/rpi-busybox-httpd:latest,
 'port_host':8081,
 'port_container':80}}

5. The Decision Engine executes the following function to send the deployment

descriptor and the image of the busybox service to the Service Execution of HS_1.

deploy(HS_1, ‘rpi-busybox-httpd.tar’, deploy_descriptor)

The Decision Engine can verify the number of container currently running in
SEG_1:

get_number_of_containers_of_pi('SEG_1')

In this example, the output from the function is:

Pi identified as SEG_1 is running 1 containers

If necessary the Decision Engine can also verify the status of the Pi with SEG_1 ID
with the help the following function:

get_pis_status(json_lst_dict, ‘SEG_1’)

The output from the function is:

{"softResources": {"OS": "Linux"}, "hardResources": {"mem": "1 GB", "disk": "16 GB", "cpu": "A
1.2GHz 64-bit quad-core ARMv8 CPU"}, "resourceUsage": {"cpuLoad": "0.08", "memUsage":
"13", "cpuUsage": "0.366414641056"}, "PiID": "SEG_1", "PiIP": "192.0.0.2", "containers":
[{"status": "Up About a minute", "port_host": "8002", "memUsage": "2023424", "name":
"/busybox-FirstInstance", "image": "hypriot/rpi-busybox-httpd:latest", "port_container": "80",
"id": "dd8aa8df26370358188b5283c828c919f393c300d25161d61a5d07086905db0e",
"cpuUsage": "39956775"}]}

Observe that list of containers has one element, namely a container named
busyboxFirstInstance which corresponds to the instance previously created.

40

6. From the results shown in Figure 6, the service provider knows that an instance of
a busybox service can handle 500 concurrent requests only. Since the service is
premium class (Requirement4) the Service Manager decides to play safely and
deploy another instance immediately, that is, without waiting to see signs of
exhaustion of the recently deployed instance. The question that arises here is
where to deploy the second instance: local replication (collocated with the first
instance in HS_1) or remote replication (in an alternative HS node such as HS_2).
The Decision Engine executes the following algorithm to verify if SEG_1 can be
used to instantiate the second instance of the busybox service.

selectHost_to_deploy_additionalInstance(json_lst_dict, json_server_Spec, PiID)

json_lst_dict: json list of dictionaries with aggregated monitored data

#json_server_Spec: server specification in json

As a result, the function produces:

The host selected to deploy an additional instance is: SEG_1

which suggests a local replication, that is, a deployment in SEG_1.

As shown in Section 4.1.4, the algorithm takes into account the results shown in
Figure 9. From these results the Service Provider knows that HS_1 is capable of
hosting two instances of the busybox service. The results show that the
deployment of the second instance will not be detrimental as it will not afflict a cpu
load above 1.5. As a precaution measure, the Decision Engine can always execute
the following function to determine how many containers are currently running in
SEG_1.

get_number_of_containers_of_pi('SEG_1')

7. Let us assume that the Decision Engine decides to deploy the second instance of
the busy-box service locally, that is, in SEG_1. Then the Decision Engine produces
the following json obj with deployment descriptor that contains the parameters for
the instantiation of an additional instance of the busybox web service.

deploy_descriptor = {' rpi-busybox-httpd.tar':
 {'image_name':'hypriot/rpi-busybox-httpd:latest,
 'port_host':8084,
 'port_container':80}}

8. The Decision Engine sends the json obj with deployment to the Service Execution of
the HS_1 node. Note that, the Decision Engine specifies a ‘port_container’ that is
free (‘8084’), port 8082 is already in use by the first instance.

deploy(SEG_1, ' rpi-busybox-httpd.tar', deploy_descriptor)

Observe that the image of the web service doesn’t need to be sent since HS_1

41

already has them. However, the deploy_descriptor is required to be delivered,
since the description to deploy the service is updated.

9. The Service Execution of HS_1 creates another instance of the busybox service.
This instance can handle another 500 concurrent requests. The two collocated
instances of busybox should be able to meet Requirement3.

As a result, two instances are running in the HS node, one in port 8002 and another
one in port 8004.

10. The Decision Engine can verify the number of container currently running in
SEG_1:

get_number_of_containers_of_pi('SEG_1')

In this example, the output from the function is:

Pi identified as SEG_1 is running 2 containers

If necessary the Decision Engine can also verify the status of the Pi with SEG_1 ID
with the help the following function:

get_pis_status(json_lst_dict, ‘SEG_1’)

The output from the function is:

{"softResources": {"OS": "Linux"}, "hardResources": {"mem": "1 GB", "disk": "16 GB", "cpu": "A
1.2GHz 64-bit quad-core ARMv8 CPU"}, "resourceUsage": {"cpuLoad": "0.04", "memUsage":
"13", "cpuUsage": "0.365180685999"}, "PiID": "SEG_1", "PiIP": "192.0.0.2", "containers":
[{"status": "Up 30 seconds", "port_host": "8003", "memUsage": "221184", "name": "/busybox-
SecondInstance", "image": "hypriot/rpi-busybox-httpd:latest", "port_container":
"80","id":"78c7f9050888ec9abf5868fb501f67abd477542f63a52f2097bff707e8e47a2e",
"cpuUsage": "56309687"},{"status": "Up 5 minutes", "port_host": "8002", "memUsage":
"1859584", "name": "/busybox-FirstInstance", "image": "hypriot/rpi-busybox-httpd:latest",
"port_container": "80", "id":
"dd8aa8df26370358188b5283c828c919f393c300d25161d61a5d07086905db0e", "cpuUsage":
"39956775"}]}

Observe that the list of containers has one element, namely a container named
busybox-SecondInstance which corresponds to the instance previously created.

11. On the basis of the results from Figure 6, the service provider can confidently
expect that the two instances of the busybox service running in the SEG_1 Hotspot
will comply with Requirement3 and simultaneously with the requirement of a
premium service (Requirement4).

8.2 Meeting of availability requirements with DTN support

In this example we use the service migration platform operating as a reactive service
migration mechanism. The example shows how the Service Manager can collaborate with
the DTN framework to meet availability requirements demanded by an emergency
service classed as premium.

42

8.2.1 QoS requirements and scenario

The Service provider is assumed to be responsible for the provisioning of a busybox web
service :

• Requirement1: The service shall be available regardless of the network
conditions in the area.

• Requirement2: The service shall be in operation within 60 sec after requested by
end users.

• Requirement3: The service shall be classed as premium.

To show how we address the challenge with the help of the service migration platform
and the DTN framework, we use the scenario of Figure 24. As in the previous example, we
assume that the Service Manager builds a service description on the basis of the
information that he has about the service and the three requirements mentioned above.
The challenge in this example, is to meet the requirements (Requirement1 ,… ,
Requirement3) when potential network problems (network partitions) materialize.

Figure 24: Integration of Service Migration and DTN to meet availability requirements.

The figure is a simplified version of the Service Migration platform shown in Figure 4. It
includes only the components needed to demonstrate how the QoS requirements
mentioned above can be meet.

The Service Manager includes a Decision Engine and a Service Repository (Service Repo)
but it does not include a Monitoring Manager or Monitoring Agents. Let us assume that
HS_1 is at the edge of the network. HS_2 is miles away from HS_1 and disconnected from
the main network, say due to a temporal network partition. The DTN node is physically
mobile in the sense that it can travel backwards and forwards between HS_1 and HS_2; it
can be physically attached to an UAV, but other means of transport will work as well.
Busybox is the service that the Service Provider is expected offer to under the observance
of QoS requirements mentioned above. Though we use RPi-3 to realize HS_1, HS_2, DTN
node and Service Manager, the hardware is irrelevant. The RPi-3 used for the Service
Manager is deployed with the UMOBILE platform discussed in Deliverable D3.3. However,
HS_1 and HS_2 are deployed with the platform shown Figure 25. Figure 25 is an

UMOBILE	
Main	

Network	

DTN tunnel

Service Manager

HS_1

HS_2

UMOBILE	
Par on	

DTN node

UMOBILE comm
busybox	

end-users

Service Repo

DE

Service	
Execu on	

43

augmented version of the UMOBILE platform aimed at integration with the DTN-
framework, such components are highlighted in blue.

8.2.2 Service migration-DTN integration architecture

Figure 25: UMOBILE components involved in the integration of service migration and DTN.

To make the service migration platform collaborate with the DTN framework, we use the
components of Figure 25 to integrate their functionalities. The figure resulted from the
enhancement of the original NDN architecture with additional services including delay
tolerance and QoS awareness. These services can be used to provide QoS and reliability in
environments afflicted by intermittent disconnections. The new components developed in
the context of UMOBILE are highlighted in blue.

In brief, the central idea is to operate the Decision Engine of Figure 24 in listening mode
to listen to end-user’s requests for services (for example busybox). These requests arrive
as Interest messages. In response to a request, the Decision Engine fetches the
corresponding image from the Service Repo and sends it back to the SEG requesting it (for
example, to HS_2) where the local Execution Service instantiates it.

 Forwarding plane: It is deployed in both, HS_1 and HS_2. It implements the logic that
decides how nodes forward Interests towards their final destination. The Forwarding
Manager is responsible for choosing the communication model (i.e., push or pull–based)
that best meets the requirements of the application and the forwarding strategies. NDN
provides several strategies such as Best Route (aggregated in NDN Forwarding) but it also
allows customised strategies.

NDN natively follows the synchronous communication model where a consumer sends an
Interest message and waits for the corresponding Data before sending another Interest. In
addition, the maximum size of a Data message is set to 8 kB. These constraints are not
suitable in disruptive scenarios where there is only a single communication link between
the consumer and producer. As shown in our example (Figure 24), a DTN node (e.g., a
raspberry Pi on board of an UAV) used for deploying a large server would need to fly
several times between HS_2 and the main network to retrieve and deliver all the pieces of
data chunks. For example, to transfer a busybox image of 2.16 Mbytes (see Table 2), the
UAV would need 270 trips (trip = image_size/Data_message_size) which is impractical. To

Network
faces

Forwarding	Manager	

NDN	
Forwarding	

FIB	 CS	 PIT	

DTN	 TCP/UDP	

NDN
core

Forwarding
plane

44

remedy the problem, we implemented an asynchronous multi-Interest forwarding model: a
consumer sends several Interest in a burst and waits for the corresponding data chunks
to arrive. In the example, the RPi is capable of aggregating both the Interests and the data
chunks. In this example, we aggregate 30 Interests (burst_size) in the second message as a
result the number of trips that the UAV needs to make is only 9 (trip =
image_size/(burst_size * Data_message_size)).

NDN core: aggregates the network services and functional data structures included in the
original NDN architecture such as FIB (Forward Interest Base), CS (Content Store) and
PIT (Pending Interest Table).

Network face: is the generalisation of a communication interface and covers physical and
software interfaces. We have implemented the DTN face (also called DTN tunneling) that
supports communications in environments that suffer from intermittent connectivity. It
relies on store-and-forward and can operate over diverse underlying technologies. It
supports data mulling and custody transfer services.

8.2.3 Practical demonstration

To verify that the integration of the service migration platform and the DTN framework
can be used to deploy the busybox web server in the HS_2 when the latter is affected by a
network partition (see Figure 24) we have conducted laboratory experiments. To simplify
the equipment involved and focus on the core functionality of the solution, we have used
the laboratory settings shown in Figure 26.

Figure 26: Laboratory settings for proving integration of service migration and DTN.

As shown in the figure, we used RPi-3 single board computers for realizing HS_1, DTN
Node, HS_2 and Service Manager. Busybox is the Dockerised image of the busybox service
and is stored in the Service Manager. The router is a commercial router manufactured by
TP-Link. To simulate the network partition of the left side of Figure 24, we proceeded as
follows:

i. We cable–connected HS_1, DTN node and Service Producer to a router. Pi, HS_1
and Service Producer can communicate with each other through the router.
HS_2 remains unplugged to simulate that it was impacted by a network

HS_2

Pi-3

DTN Node HS_1

busybox	

Service Manager

TPLINK TL-WDR3500
router

Pi-3 Pi-3 Pi-3

45

partition that rendered it isolated.

ii. We unplugged HS_1 and Service Producer from the router and plugged HS_2.
The effect is that DTN node has joined HS_2 in its partitioned network. Pi and
HS_2 can communicate with each other through the router. This connection
arrangement is equivalent to physically proximity between the HS_2 and the
DTN node if the latter were mobile, say attached to an UAV.

iii. We returned to step i, and repeated the procedure as many time as necessary
to transfer all the data chunks of the busy-box service.

At Interest message level, the solution takes advantage of the name-based routing of NDN
to select forwarding strategy based on names. It operates as follows:

1. Let us assume that HS_2 is currently impacted by a network partition (step i).
HS_2 receives a user’s request for the busybox service. In response, the
Forwarding Manager of HS_2 issues an Interest message with a name prefix
/dtn/service/emergency to request the service through its DTN face.

2. HS_2 forwards the Interest to the DTN node when DTN node becomes reachable to
HS_2 (step ii). This is done through a DTN static link that we set between HS_2 and
HS_1 via the DTN node. The static rule at HS_2 is set, by adding the following line to
the ibr-dtn configuration file:

route1 = dtn://HS1/[[:alpha:]] dtn://UAV.dtn

The ‘ dtn://* ‘ parameters are the relevant DTN Endpoint IDs (EIDs). To be
reachable, we also have to configure the local HS_2 NFD in order to register HS_1
as the next hop FIB entry for the namespace serving our Interest. This can be done
by using the following command on a terminal, to configure NFD:

nfdc register /dtn/service/emergency dtn://HS1/nfd

3. Although we use static routing in this laboratory experiments, several DTN routing
algorithms can be enabled to support more sophisticated scenarios.

4. When the DTN node is able to communicate with HS_1 (step i), it delivers the
Interest message to the latter. The NDN Interest packet has been encapsulated in
one or more DTN bundles. When the two nodes (HS_1 and UAV, both running DTN
implementations) come into contact, the DTN node (“UAV”) delivers the bundles to
its destination (HS1) by examining its EID - essentially closing the tunnel. After
receiving the bundle(s), they are decapsulated and the resulting Interest packet
can finally be processed by HS_1.

5. After examining the Interest, HS_1 tries to retrieve the busybox service from
caches and through name-based routing.

6. The Service Manager or another intermediate node in possession of the image
replies with one or more Data messages along a reverse path and using a delay-

46

tolerant forwarding strategy. A namespace dedicated to delay-tolerant Interests
can optionally be used to trigger delay-tolerant forwarding strategies, as a per-
namespace strategy selection is made by the intermediate forwarders. The naming,
thus, can serve as an API.

7. The first Data message sent in response to an Interest is augmented with
information about the total size (e.g., 1MB) of busybox. This allows HS_2 to
determine how many Interests it needs to send to the Service Manager to retrieve
busybox. HS_2 appends chunk IDs to the name prefix of each subsequent Interest,
for example the prefix of a second Interest message is expressed as %02.

8. Again, when needed, the subsequent Data packets are forwarded through the DTN
face (i.e. are encapsulated in DTN bundles and delivered to nodes according to
their EIDs). The current implementation has to ensure that the FIB entries still
exist by setting a large Interest Lifetime, so that the subsequent Data packets can
follow the breadcrumbs route back to the consumer (HS_2).

9. When HS_2 receives all the chunks of busybox, it calls its Service Execution
function to execute it. Observe that the number of cycles (trips of the DTN node
between HS_2 and HS_1) depends on the size of the service.

8.2.4 Discussion of results

After repeating the cycle 9 times, the image of busybox, originally located in Service
Manager, was instantiated in HS_2 and able to respond to users’ requests. The availability
of busybox in the partitioned network satisfies Requirement1.

Observe that in this experiment, HS_2 is free from running other instances. However, if
HS_2 had other instances running, we would have taken into account the current status of
the resources of HS_2 and verified its capability to run another busybox instance. This can
be done with the help of a Monitoring Agent and Monitoring Manager as shown in Figure

4. Figure 9 shows that two instances of the busy-box service can comfortably run in the
Raspberry Pi that we use for realizing HS_2, without inflicting a cpu load above 1.5.

In the same order, note that for the sake of simplicity, the experiment does not take into
account the number of users requesting the busy-box service, consequently, the Service
Provider deploys a single instance. In accordance with the results shown Figure 6, this
instance should be able to handle about 400 concurrent requests without exhibiting signs
of exhaustion. However, if an unexpectedly large number of requests arrive to exhaust the
instance, the Service Provider can react by deploying a second instance to ease the load
inflicted on the first one.

On the other hand, the service provider should have no difficulties in meeting the
requirement on the deployment time (see Requirement2) since from Table 2 he knows
that the size of the busy-box is 2.16 Mbytes which amount to 270 trips of the DTN node
between the HS_2 and HS_1 to transfer the busy-box image. Once all the chunks of the
image of the busy-box service are in HS_2, it costs, in accordance with Figure 12, less than
five seconds to have to busy-box fully operational: about 3.3 seconds to start Docker and
about 1.4 seconds to spin the container up.

The results prove that the solution can indeed be used to deploy services regardless of

47

network conditions or network coverage. It can also be used for deploying delay–
sensitive services as close as possible to the end-users. Note that the busybox service of
the example is assumed to be self–sufficient, i.e., capable of working independently from
the main network. Services that need support from the main network can also be
deployed, provided that the DTN node is used for transporting data between the server
and the main network. Likewise, in the absence of hosting facilities in the partitioned
network, the DTN node can be used to data–mule Interests and Data messages between
the end users and the server deployed in the main network. However, in this setting the Pi
will inevitably cause delays which can be either time constrained or arbitrarily long. In
the latter case, the solution can still be used but for less-than-best-effort services and
best-effort services with response time requirements. The observation here is that in
practice the service provider is unlikely to agree to deploy premium services with
stringent response time requirements on a network prone to failures.

8.3 Meeting of availability requirements with INRPP support

In this example we use the service migration platform operating as a proactive service
migration mechanism (pre-fetching). The example demonstrates the potential use of the
service migration platform in collaboration with the INRPP flowlet congestion control to
migrate the service in advance before user request is generated. Unlike the reactive
migration, in this example we do not consider the runtime resource exhaustion of the
hosting hardware (e.g., hotspot). As the main benefit of service pre-fetching is to cache
the service at the hotspot close to the end users and make it available for instantiation
when needed, the deployment time is needed to be optimised to enhance the availability.
The example assumes that the service provider is running services of different classes.
Thus, INRPP is activated with its priority differentiation mechanisms in action (premium
and best effort). The example includes evaluation results produced by the ndnSIM
simulator [13].

8.3.1 Service migration-INRPP integration architecture

Forwarding Manager

INRPP forwarding

FIB PIT CS

TCP/UDP

Forwarding
Plane

NDN
Core

Network
faces

Figure 27: UMOBILE components involved in the integration of service migration and INRPP.

To make the service migration platform collaborate with the INRPP congestion control,
we use the components of Figure 27 to integrate their functionalities. The figure resulted
from the enhancement of the original NDN architecture with additional services including

48

delay tolerance and QoS awareness. These services can be used to provide QoS, hop-by-
hop congestion, multipath communications control and service priority with INRPP. The
new components developed in the context of UMOBILE are highlighted in blue. Basically
are the same elements as in the service migration-DTN solution, except that the INRPP is
implemented in the forwarding manager and includes the new congestion control in the
forwarding strategy. INRPP needs to be deployed all any devices of the UMOBILE
network, including the hotspots and the Service Manager.

8.3.2 QoS requirements and scenario

The Service provider is assumed to be responsible for the provisioning of a busybox web
service:

• Requirement1: The service S2 shall be available with full priority in contrast to
other best-effort services like S1.

• Requirement2: The service shall be in operation within 0.5 sec after requested
by end users.

• Requirement3: The service S2 shall be classed as premium and S1 as best-effort.

The challenge in this example is to meet the deployment time of S2 as stipulated in
Requirement3 ---a crucial requirement to the service provider because S2 is classed as a
premium service. Let us assume that the Service Provider is in possession of information
that indicates that S2 and S1 will be needed in HS1 and HS2, respectively. On the basis of
this hint and to avoid the risk of failing to meet Requirement2 the Service Provider decides
to pre-fetch the images of S1 and S2 with the assistance of the INRPP congestion control
with its priority mechanism switched on.

To show how the Service Provider addresses the challenge, we use the scenario of Figure
28. As in the previous example, we assume that the Service Provider builds a service
description on the basis of the information that he has about the service and the three
requirements mentioned above.

49

UMOBILE network

Service
manager

Service
repository

Main path
for Hs1

Main path
for Hs2Detour

for Hs1

Detour
for Hs2

S1: Best-effort service to Hs1
S2: Premium service to Hs2

UMOBILE
router

UMOBILE router

UMOBILE router UMOBILE router

UMOBILE router UMOBILE router

Hs 1 Hs 2

Figure 28: Integration Service Migration and INRPP to meet the QoS requirements.

The challenge in this example, is to meet the requirements (Requirement1, … ,
Requirement3) even when congestion occurs in the UMOBILE network. In this case we set
up an scenario according to Figure 28 using ndnSim [13] with the INRPP implementation.
In the simulation we have two services, a best-effort service S1 and a premium service S2.
These two services are treated differently in the cache that is acting as a temporary
custodian for the congestion control giving priority to the premium service.

8.3.3 Service migration-INRPP evaluation results

In this section we include a set of experiments to evaluate the benefits of using the service
migration platform along with INRPP to offer differentiated services that distinguish and
treat service of different classes (premium, best-effort, less-than-best-effort) differently.

Figure 29: Average flow completion time for two docker images using INRPP with full priority (FP) and no-
priority (NP) compared with random flows using plain NDN.

50

The example evaluates the scenario depicted in Figure 28, where all links are 100Mbps

except the link to the Service Manager which is 1Gbps. We evaluated how fast we can

transfer two busybox web-service images (S1 and S2) of 2.16 Mbytes from the Service

repository to HS1 and HS2, respectively. We use INRPP with no priority (INRPP-NP in

Figure 29 and Figure 30) for service S1 then we use INRPP with full priority (INRPP-FP in

Figure 29 and Figure 30) for service S2. In the simulation we added NDN random

background traffic without using INRPP and pareto distributed flow sizes with shape

equal to 1.2 and E[L]=45KB, where L is the size of the flow. In Figure 29 we can observe

the flow completion time, i.e., the time necessary to transfer the image to the hotspot that

wants to instantiate the service, and therefore, how fast we can move the service to the

edge of the network. In this case we know that there is a requirement of 0.5 sec

(Requirement2). In the figure, we can see that the transfer time of S2 is slightly below 0.2,

achieving the maximum operating latency by far. In contrast, the transfer time of S1 is

slightly above 0.5, having a transfer time close to twice of that of S2 because it is not a

prioritized service. Here we can also observe the average completion time for normal

NDN flows, seeing that despite being very small flows in average (E[L] = 45KB) the flow

completion time is greater than of S2.

Figure 30: Average throughput for two docker images using INRPP with full priority (FP) and no-priority (NP)
compared with random flows using plain NDN.

In Figure 30, we can observe the average throughput for the same evaluation analyzed in
the last paragraph. In this case, we can see that the throughput achieved by S2 is close to
three times (90Mbps vs 30Mbps) S1. Here we can see that S2 can take all the bandwidth
available, while S1 is sharing the bandwidth with the rest of flows. However, we can see
that S1 is getting more throughput than NDN flows, because it is able to use the residual
bandwidth available in the detour path that regular NDN is not using because it is a single
path solution.

Once the image of the premium service S1 is cached in HS1, the service provider can
instantiate it, in no time, when it is eventually requested in no time to comply with
Requirement2. Note that the image of S2 might also be cached in HS2 before it is needed,
but this is secondary because S2 classed only as a best-effort service.

51

9 Concluding remarks

Increasingly, network providers are responsible for delivering application services to the

End-users and effectively become service providers. In different circumstances, these

services are associated to QoS expectations (availability, response time, etc.) that the

network provider is expected to honour in behalf of the service producers. With a large

number of services, the task is hard to perform unless automatic tools and techniques are

available. Several mechanisms for addressing QoS have been suggested in the literature

(for example see [14]) but the topic is still an open research question as services with

more stringent QoS requirement are being developed and new technologies are available

to devise solutions. This deliverable discusses three QoS mechanisms that the UMOBILE

project has developed to support network providers in delivering different classes of QoS:

less-than-best-effort, best-effort and guaranteed QoS (premium). Comparatively, less-

than-best-effort and best-effort QoS are simpler to deliver. We have focus our effort on

the delivering of guaranteed QoS because it is far more challenging; it demands

systematic approaches like the one taken in this document. A major strength of the

approach taken by the UMOBILE projects is its collaborative nature. The mechanisms that

we have developed work at different levels of the software stack (from the application to

the networks layer) independently from each other but can be integrated to collaborate in

the fulfillment of common QoS goals.

The salient feature of the Service Migration platform, which operates at the application

level, is that it takes advantage of recent progress in light virtualization technologies. It

relies on opportunistic caching and replication of service instances to meet QoS

expectations. It is aimed at staless services that can be quickly deployed, redeployed from

scratch and discharged when they are no longer needed. The Service Migration Platform

accounts for local and remote replication: a new replica of a service is collocated with

existing ones in the same host or instantiated in a different host, all depending on the

current status of the resources of the host.

The Service migration platform can be operated either as a proactive service migration

mechanism (also known as pre-fetching) or reactive service migration mechanism.

The proactive service migration approach aims at caching images of services in

convenient locations before the images are actually needed. From this perspective, it

operates independently from the actual instantiation of the service and its delivery. It

relies on information about the imminent need of the service in the near future. Though

this delivery does not elaborate about how this information is made available to the

Service Provider we can mention in passing that this information can be collected from

statistical records about service usage.

The reactive service migration approach can be used at service delivery time to react to

signals about resource exhaustion. The algorithms that decide on service deployment

strictly rely only on information available to the service provider, that it, they do not need

to disturb the end-users or instrument end-users’ devices to retrieve information from

them. Neither do they rely on information provided by dummy users deployed to take

52

performance measures from the end-users’ side. The monitored data used by the Decision

Engine is about the status of the resources (specifically, the Pis that implement the

Hotspots and containers) as opposed to the activities of the end-users. The deployment

algorithms use a priori collected information about critical performance thresholds of the

services such as their exhaustion points. We have collected this information from

laboratory experimentations. For example, we deployed web services and exposed them

to heavy loads of requests to find out how many concurrent requests they can handle

smoothly. Likewise, we instantiated replicas of services in HS nodes (Raspberry Pi-3

computers) to measure how many instances a Pi-3 computer can run without showing

signs of exhaustion. Though this experiment-based approach is time consuming, we

believe that it is far more realistic than analytical approaches as our deployment decisions

are based on facts. At this stage of the development of the service migration platform the

focus is on the current status of the resources of the Hotspot nodes to decide on local or

remote replication. Thus deployment of instances takes into account Hot Spot resources,

we do not take into account yet other factors such as network resources other than being

or not being available as in the example of the integration of the Service Migration

Platform with the DTN-framework. For example, the deployment algorithms do not try to

optimize the location of the instances, say to reduce traffic. Neither do they consider other

optimization techniques such as service prioritization, replica swapping, discharging, and

so on. It is worth clarifying that the results from the laboratory experiments that we have

performed are valid for the specific hardware and software that we use. However, we

believe that the methodology is general enough and can be followed in other settings. We

hope that other researchers and industry engineers responsible for addressing QoS issues

will benefit from our experience.

 The salient feature of the DTN framework is its inherent ability to support

communications in adverse networking conditions, be it severe disconnections and long

delays, or highly congested links. Furthermore, the reliability features of the DTN

framework promote efficiency, since the UMOBILE platform can use large data packets

instead of multiple smaller ones. This can be beneficial in cases when data must be

forwarded via data mules, such as UAVs, or mobile nodes. Finally, service providers can

support a less-than-best-effort service, by using the DTN forwarding mechanism, relying

on its ability to forward packets in a delayed fashion, allowing more network resources to

more important traffic.

The salient feature of the INRPP congestion control is that it can operate at the network

level in the background to mitigate congestion problems that can eventually propagate to

the application layer and impact the QoS of the applications. It is capable of differentiated

different classes of services (premium, best-effort and less-than-best effort) at network

level and prioritise traffic accordingly.

A central argument of the UMOBILE work is that QoS requirement can be conveniently

addressed by a collaboration of mechanisms that operate at different levels of the

software stack. They key idea is to manipulate parameters where they are most visible.

53

To support this argument, we included an example that shows the collaboration of the

Service Migration Platform with the DTN-framework and INRPP.

10 References

[1] UMOBILE D3.1 Deliverable, Umobile architecture report (1), Sotiris Diamantopoulos
et. al., Technical Report, EU UMOBILE project (grant No. 645124), May 2016.

[2] Matt Masnider et. al., Microsoft Azure: Reliable Services overview,
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-
introduction (visited in Jul 2017).

[3] Evangelos Kotsovinos and Tim Moreton and Ian Pratt and Russ Ross and Keir Fraser
and Steven Hand, Global-scale Service Deployment in the XenoServer Platform, Proc.
USENIX: First Workshop on Real, Large Distributed Systems, 2004.

[4] R. Wetzel, CDN business models - not all cast from the same mold,
http://www.wetzelconsultingllc.com/CDNArticle.pdf, Oct 2001, Business
Communications Review (visited in Jul 2017).

[5] R. Wetzel, CDN business models - the drama continues,
http://www.wetzelconsultingllc.com/BCR.CDNarticle2002.pdf, Apr. 2002, Business
Communications Review (visited in Jul 2017).

 [6] B. Frank, I. Poese, Y. Lin, G. Smaragdakis, A. Feldmann, B. M. Maggs, J. Rake, S. Uhlig,
and R. Weber, Pushing CDN-ISP Collaboration to the Limit, ACM SIGCOMM Computer
Communication Review, vol. 43, no. 3, Jul. 2013.

[7] Named Data Networking, NDN Project, http://named-data.net (visited in Apr 2017).

[8] Richelle Adams, Active Queue Management: A Survey, IEEE Communications Surveys
& Tutorials, vol. 3, n. 15, 2013.

 [9] UMOBILE D4.1 Deliverable, Flowlet Congestion Control – Initial Report, Ioannis
Psaras, et. al., EU UMOBILE project (grant No. 645124), Jul. 2016.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
http://named-data.net/

54

[10] UMOBILE D4.2 Deliverable, Flowlet Congestion Control – Final Report, Ioannis
Psaras, et. al., EU UMOBILE project (grant No. 645124), (due on Jul 2017).

[11] R. Rosen, Linux containers and the future cloud, Linux Journal, vol. 2014, no. 240,
Apr. 2014.

[12] Docker Inc., Docker, https://www.docker.com, (visited in Jan 2017).

[13] of NS-3 based Named Data Networking (NDN) simulator: ndnSIM documentation,
http://ndnsim.net/2.3/index.html (visited in Jul 2017).

[14] Aref Meddeb. Internet QoS: Pieces of the Puzzle, IEEE Communications Magazine,
48(1), Jan. 2010

http://ndnsim.net/2.3/index.html

