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Executive Summary 

Background: This report is written in the framework of the UMOBILE project WP4 “Services enablement”, 

task 4.2 “Data Collection and Contextual Inference”. The task dealt with data mining in the networking 

context. Specifically, the task has worked upon i) devising mechanisms and tools that assist in the collection 

of data from sensors and other sources; ii) working on contextual awareness aspects relevant to networking 

in general, and to UMOBILE in particular; iii) the dissemination of the processed data to other UMOBILE 

services and modules, to assist in a future optimization of the network operation, based on 

contextualization. 

A relevant aspect worked in this task is the notion of usage contextualization and service personalization. A 

second relevant aspect concerns the capability to infer roaming behaviour in a way that keeps anonymity 

and privacy of the user as well as of the device. A third relevant aspect of the task was to understand how to 

assist UMOBILE, namely, which modules could benefit of such contextualization operation, and what/how to 

integrate this operation in the UMOBILE architecture. A fourth aspect worked upon in this task concerned 

deriving relevant guidelines for the community, based on data collection and experimentation. 

For the purpose of contextualization, the task started with an analysis of UMOBILE requirements and how to 

best fit such requirements when considering data capture on the network. Operationally, the task started 

with a model derived from the  Senception’s product PerSense ™. Such model has been incorporated into 

the PerSense Mobile Light (PML) middleware, a first tool to assist in data capture and understanding sensing 

limitations. Based on such product, and derived from an analysis of the UMOBILE use-cases, as well as 

derived from an analysis of project requirements, the task then proceeded to propose the UMOBILE 

Contextual Manager module, which is specified in this deliverable and which shall be available until the end 

of the project as open-source software, technology readiness level 6, in the context of the UMOBILE proof-

of-concept being defined in WP5 (month 36). 

This deliverable has the following goals: i) to introduce related literature concerning contextualization 

aspects in networking; ii) to describe the relevancy of such contextualization in networking in general as well 

as in UMOBILE; iii) to provide the specification of the contextual manager as our proposal for a flexible 

networking framework for contextual awareness in NDN/ICN; iv) to describe experiments carried out, 

detailing results obtained and the relevancy in the context of networking. 
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List of Definitions 

Term Meaning 

AP Networking device, software and/or hardware based, that resides in the 

Customer Premises. An access point connects users to other users within the 

network and also can serve as the point of interconnection between a WLAN 

and a fixed network. 

BT Bluetooth is a wireless for short-range communication. 

CM Contextual manager, the module in UMOBILE responsible for providing 

measures of availability, popularity of nodes, as well as similarity of nodes, to 

other UMOBILE modules. 

Data packet In NDN, once the Interest reaches a node that has the requested data, the node 

will return a Data packet that contains both the name and the content, together 

with a signature by the producer’s key which binds the two. This Data packet 

follows in reverse the path taken by the Interest to get back to the requesting 

consumer. 

DTN Delay Tolerant Networking (DTN) supports interoperability of other networks by 

accommodating long disruptions and delays between and within those 

networks. DTN operates in a store-and-forward fashion where intermediate 

node can temporarily keep the messages and opportunistically forward them to 

the next hop. This inherently deals with temporary disruptions and allows 

connecting nodes that would otherwise be disconnected in space at any point in 

time by exploiting time-space paths. 

EC European Commission 

E2E End-to-end principle of the internet, which states that the edges of the system 

perform the complex operations, while the network simply transports 

information. 

ICN Information-Centric Networking (ICN) supports efficient delivery of both content 

and services by identifying information by name rather than the actual location. 

This decoupling of the information from its actual location breaks the need for 

end-to-end connectivity thus enabling much wider flexibility for efficient content 

and service retrieval. ICN also inherently supports caching thus enabling much 

better localized communications. 

Interest packet In NDN, a consumer puts the name of a desired piece of data into an Interest 

packet and sends it to the network. Routers use this name to forward the 

Interest toward the data producer(s). 



 

 

NDN Named Data Networking (NDN) is a Future Internet architecture that aims to 

transition today's host-centric network architecture into a data-centric network 

architecture. In particular, users will no longer need to retrieve data from a 

specific physical location; instead, users will be able to search for content, 

independent of the location where the content is stored. 

Node A wireless or wired capable device. 

OS An operating system (OS) is system software that manages computer hardware 

and software resources and provides common services for computer programs. 

The operating system is a component of the system software in a computer 

system. Application programs usually require an operating system to function. 

Service Service refers to a computational operation or application running on the 

network which can fulfil an end user’s request. The services can be hosted and 

computed in some specific nodes such as servers or gateways. Specifically, 

services are normally provided for remuneration, at a distance, by electronic 

means and at the individual request of a recipient of services. For the purposes 

of this definition; “at a distance” means that the service is provided without the 

parties being simultaneously present; “by electronic means” means that the 

service is sent initially and received at its destination by means of electronic 

equipment for the processing (including digital compression) and storage of 

data, and entirely transmitted, conveyed and received by wire, by radio, by 

optical means or by other electromagnetic means; “at the individual request of a 

recipient of services” means that the service is provided through the 

transmission of data on individual request. Refer to D2.2 for further details. 

Context Context is any information that can be used to characterize the situation  of  an  

entity.  An  entity  is  a  person,  place,  or object that is considered relevant to 

the interaction between a user  and  an  application,  including  the  user  and  

applications themselves [1]. 

IoT Internet of Things, a network of cyber-physical devices as well as the 

communication between such devices. 

OPEX Operational  Expenditure. Resources that an entity spends on a day-to-day basis 

to maintain a service. 

 



 

 

 

1. Introduction 
UMOBILE established the main goal of developing a mobile-centric, service oriented architecture that 

efficiently delivers content and services to end-users. By efficiently it is meant that content/services are 

reliably available with the expected quality of service and despite any impairments of the communication 

infrastructure. UMOBILE decouples services from their origin locations, shifting the host-centric paradigm to 

a new paradigm, one that incorporates aspects from both information-centric and opportunistic networking 

with the ultimate purpose of delivering an architecture focused in: i) improving aspects of the existing 

infrastructure (e.g., keeping traffic local to lower delays and OPEX); ii) improving the social routine of 

Internet users via technology-mediated approaches; iii) extending the reach of services to areas with little or 

no infrastructure (e.g., remote areas, emergency situations).  

A relevant aspect to be considered when pushing network services closer to the user (e.g., mobility 

management, local communication) concerns a better understanding over time and space of the devices 

behaviour (positioning; availability of resources). For instance, users in some areas may suffer from 

intermittent and unstable Internet connectivity not just over space, as well as over time (e.g., specific days of 

the week). Or, the network may experience loads at regular periods, or simply due to an unexpected event. 

Contextual awareness can assist several aspects of networking, and has been the focus debate in related 

literature for long, and its relevancy in the context of challenged networking scenarios, such as in the 

Internet of Things (IoT) is well covered by several surveys  [1]. The most recent evolution of contextualization 

in IoT concerns Fog Computing [2]; social interaction in IoT [3]; the use of contextualization to improve 

aspects of network operation such as routing [4]. 

Network contextualization is derived from network data mining and measurement. Being able to 

characterize roaming habits as well as to capture/measure internal usage in a way that does not endanger 

anonymity and data privacy is therefore one of the goals that have been set in the context of the work of 

task 4.2. Such characterization goes beyond the integration of movement prediction and/or anticipation 

mechanisms in the network operation, e.g., in routing or mobility management. In fact, the human 

movement and roaming behavior is becoming more relevant, and today, due to an extensive effort derived 

from several interdisciplinary initiatives as well as from extensive and wide traces collections, it is globally 

accepted that there is a connection between social behavior and a user's roaming behavior. It is the social 

behavior that assists in defining future user movement, both from an individual perspective, and from a 

group perspective. 

Being capable of estimating such behavior is therefore relevant to optimize the network operation, be it 

from a mobility management perspective - e.g., handover optimization -; from a resource management 

perspective - e.g., performing a more intelligent load-balancing based on potential future moves of specific 

devices -; from a routing perspective - e.g., creating more robust routing mechanisms by selecting a priori 

paths that have a chance to be more stable in the presence of node movement. 

 In this document, we cover the work concerning contextualization, including data collection and inference 

aspects that has been developed in WP4, task 4.2. In operational terms, the focus is on the following 

aspects: 



 

 

 

• A better understanding on how data mining can assist the overall network operation. 

• Assist in usage and network contextualization to develop new types of services/applications. 

• Provide results of experiments carried out so far. 

• Specify the contextual manager of UMOBILE, and its interfaces in the context of the UMOBILE 

architecture. 

The remainder document is organized as follows. Section 2 covers background on network contextualization 

and how this task worked upon such background. Section 3 describes tools developed in the context of the 

task, namely, PML, as well as the specification of the open-source Contextual Manager module. The 

Contextual Manager is under development (WP5) and the code (technology readiness level 6) will be made 

available until the end of the project. Section 4 describes the experiments carried out so far. We conclude 

the deliverable in section 5. 

2. Contributions Towards Related Work 
Context-awareness has been a field of extensive work throughout the last decades, having been first 

described as a computing model for user interaction with multiple mobile and stationary devices with the 

capability of adapting to location of use, to a collection of nearby people and objects, as well as to changes 

that such objects may attain over time [6]. Enabling devices as well as applications and operating systems to 

adjust to surrounding conditions has been the main definition of context in regards to interaction between 

users and devices. Chen  and  Kotz  examined  context-aware  systems  and applications, types of context 

used and models of context information, systems that support collecting and disseminating context and 

applications that adapt to changing context. 

In this project, the initial context notion remains: context is “any information that can be used to 

characterize the  situation  of  an  entity.  An  entity  is  a  person,  place,  or object that is considered relevant 

to the interaction between a user  and  an  application,  including  the  user  and  applications themselves”. 

Nevertheless, due to the advent of pervasive wireless/mobile technology and to the increasing number of 

sensors around, context-awareness should be integrated into both services and network, as we shall explain 

in this section.  

In the realm of applications, context-awareness has been dealt with in an active manner (context that is 

immediately presented to the user) or passive manner (context is stored and later retrieved). Active context-

awareness required more infrastructure support. 

With the technology evolution as well as with new computing and networking paradigms such as IoT, 

research has been extensively dealing with context-aware computing solutions derived from a (limited) 

number of sensors until the most recent advent of Big Data, where context-awareness becomes more 

critical, in assisting the decision on which categories of data to process and when, among other features. 

In pervasive wireless computing, more relevant that Big Data requirements is  to understand if context 

derived from “small data” can assist in making better decisions in what concerns the network operation; 



 

 

applications’ adaptability; data dissemination, thus resulting in better Quality of Experience (QoE). For a 

concrete survey on the evolution of context-awareness, Perera et al. provide a thorough overview on the 

evolution of context-awareness for IoT, including projects until 2011 [8]. 

In IoT, context-awareness is applied for multiple purposes. For instance, it may assist in a more intelligent 

selection of sensors [10] [13]. Or, it may be relevant to assist in service selection [14]. 

More relevant, however, is the research that is being developed  and that assists in pushing the network 

operation closer to the end-user, in an attempt to simplify the network operation and to improve QoE/QoS 

[12], as explained next. 

2.1. Network Contextualization 
New paradigms in networking have been trying to overcome issues concerning challenged network 

environments, e.g., due to delays (DTNs) as well as due to topological variability derived from devices being 

carried around by people relying on different notions of context-awareness to improve the network 

operation. 

The HAGGLE project [15] focused on overcoming issues faced by opportunistic wireless networks (Pocket 

Switched Networks) due to the end-to-end internet design. HAGGLE relied on contextual awareness, among 

other new features, to assist in bringing networking functions closer to the user, thus resulting in better 

traffic locality. Context in HAGGLE has been identified with social habits and encounters between individual 

users, having been applied in naming (identification of data instead of host reachability); local data 

dissemination derived from frequency of encounters [16]. 

The ULOOP project [18] focused on improving conditions for user-centric networks to emerge faster. User-

centric networks are in essence opportunistic wireless networks where internet end-users own (in addition 

to carrying) personal devices that become networking devices (that perform networking functions, such as 

mobility management, or routing). In ULOOP, network contextualization has been applied to assist mobility 

management in terms of handover optimization [19][20]. Here, context concerned data that assisted in 

understanding roaming habits and preferences of individual users in wireless networks, towards visited 

networks, and that allowed the network to make a decision i) on how to perform a handover, based on 

ranking of such visited networks [21]; ii) on which mobility management anchor point to delegate the 

function of handing over. 

Mobility modeling, and trajectory prediction is another networking area where context-awareness has 

become increasingly relevant [22][23], being context often denoted with a time characterization (e.g., 

patterns of encounters). Simplistic modeling of social behavior lead to social mobility models [23][24], of 

which the Community Based Model (CMM) [27] or the Sociological  Interaction  Mobility  for  Population  

Simulation (SIMPS) [28] model are the most relevant models in terms of integrating a social attractiveness 

perspective into the modeling of movement. Properties integrated into these models were derived from 

traces’ observations and therefore, context here concerns roaming habits of users over time and space. 



 

 

2.1. Network Contextualization in NDN 
A fundamental difference between information-centric networks such as NDN and IP networks is that in 

NDN forwarding and routing are decoupled. While forwarding can detect and recover from link failures 

independent from the routing information, the existence of a routing plane helps bootstrapping adaptive 

forwarding and handling link recovery. On the other hand, NDN routing protocols may benefit from the 

existence of an adaptive forwarding plane due to the relaxed requirement on timely detection of failures 

and convergence delay which may allow the usage of routing in more dynamic networking scenarios. Hence, 

in NDN, network contextualization is relevant not just to assist in interface selection; it is relevant to assist in 

the development of forwarding strategies, as well as routing better suited for information-centric 

environments where there is high topological variability (such as in opportunistic scenarios). 

A second area where context-awareness becomes more relevant is in data dissemination. In this context, 

context-awareness integrating social features has been applied by several authors in the development of 

social-aware opportunistic mechanisms for data dissemination in the context of opportunistic routing, as in 

the case of the PodNet architecture [30], where users advertise the data objects that they have interest in. 

When two nodes meet they decide whether or not to exchange data based on the information gathered in 

terms of categories of interests.  Contentplace [29] builds upon this notion, adding the novelty of exchanging 

short summaries for the data objects they are carrying, thus contributing a decentralized dissemination 

solution.  

Hence, up until now, context-awareness in NDN has been applied to assist in local, direct data dissemination. 

However, there are aspects where it is essential, such as in naming, or routing. For that purpose, from an 

information-centric perspective it is relevant to consider new, interdisciplinary approaches to context-

awareness, that go beyond the usual time-variant notion of context, relevant to challenge environments due 

to the dimension of mobility of devices. 

2.2.  Interdisciplinary Approaches to Context-Awareness 
Interdisciplinary efforts focusing on bringing in social-aware context notions into computer science are in the 

rise. Their main focus is on considering the different sociological, psychological and computational factors 

that affect/define interaction between people.  Contextual aspects such as distance, orientation towards 

others; density of people around us, as well as noise levels are features that can assist in better 

understanding the physical proximity between people, the social proximity between people, and the relation 

of people towards the use of spaces. Such context can today easily be collected by regular sensorial devices, 

carried or controlled by people. Hence, personal technology can be relied upon to capture indicators that 

can measure both physical and social proximity. By measuring proximity, one can better defined personal 

spaces; develop tools that can stimulate social cohesion, as well as stimulate a better relation towards 

spaces around us.  

The discussion on guidelines to assist the detection of social interaction via sensing technologies has been 

the focus of work by Alvarez-Garcia et al. [31], who debated on a number of sociological markers like co-

activity, proximity, speech activity, and similarity of locations visited. Then, in the context of human-

computer interaction, there is an extensive line of work focusing on improving aspects such as video 

delivery; nearness of remote staff; direction detecting. This line of work attempts to assist in better usability 

as well as in better addressing the design of technological solutions [32]. 



 

 

Quantification of social interaction via pervasive wireless sensing systems is a recent line of research, for 

which some aspects have already been addressed in related literature. Most work has been focused on 

distance estimation via sensing technology (Wi-Fi or Bluetooth) as well as the relation of distance and 

capacity to grasp real-world social interaction patterns [33][34][35]. In this line of work DARSIS [36] is a 

system that allows on-the-fly exchange of facing direction information between users and facilitates the 

interpersonal distance recognition process by sharing RSSI values among devices. DARSIS has been shown to 

have an accuracy level of 81.4% in terms of detection of interactions in a real-world environment. 

In terms of available middleware that can be used to carry experiences in realistic conditions, Sociometer 

[35] focuses on the notion of social engagement given by proximity and conversational activities to 

understand how users interact. Being a mark in terms of better understanding cues concerning social 

context and the fact that activity recognition can be correlated with social engagement, Sociometer falls into 

the category of intrusive tools, requiring line-of-sight as it is infrared based. Social engagement, on the other 

hand, can take place independently of whether or not there are obstacles between people, and whether or 

not users are facing each other. Similarly to Sociometer, SociableSense [36] aims at inferring individual 

behavior in the context of office environments. SocialSense is based on a smartphone platform, thus being 

less intrusive. SociableSense adaptively controls the sampling rate of accelerometer, Bluetooth, and 

microphone sensors in order to estimate the user's sociability, and strength of relationship with colleagues. 

Neverthless, SociableSense brings in some privacy issues and increases the dependency over third party 

systems, by implementing a computation distribution scheme that dynamically decides where to perform 

the computation of classification tasks, i.e., locally or on remote servers including cloud services. 

NSense [37]  is open-source non-intrusive middleware that characterizes the user's personal space and social 

context, by capturing different physical and social proximity indicators. Aiming to reduce outside 

dependencies and to protect the user's privacy, NSense performs local inference only (in the smartphone). In 

order to balance energy and accuracy, NSense makes use of adaptive schemes while controlling the sampling 

rate of accelerometer, bluetooth, Wi-Fi direct, and microphone sensors. NSense is currently being used in 

studies concerning social proximity. 

The MTracker [21] is middleware developed in the context of the ULOOP project that performs passive 

ranking of visited wireless networks, based on the user’s social habits, taking into consideration aspects such 

as the frequency of visits to a network; duration of such visits; etc, with the main goal of improving the 

network operation in terms of mobility management. 

In the context of pervasive sensing, indicators of proximity such as distance or location, as well as individual 

motion are usually considered to characterize physical proximity. Other relevant aspects that can be 

considered are measures of the cost between different devices based on their interaction over time and 

space (social strength); surrounding sound level; similarities in motion or in mobility.  

The context-awareness work developed in UMOBILE follows the line of interdisciplinary work, considering 

that the availability of pervasive sensing technology brings in the possibility to further explore interaction 

among devices not only in sociological terms or in terms of human-computer interaction, but in fact in the 

context of opportunistic and direct data transmission between devices. By exploring such interaction and by 

better classifying/correlating user behavior not only in terms of roaming (movement) but also in terms of 

interaction (e.g. crowd density in time and space) the overall network operation can be better suited to 

support challenged environments, such as the ones that UMOBILE is being devised to tackle. 



 

 

2.3. Contextualization in UMOBILE 
In the UMOBILE project context-awareness follows the line of interdisciplinary work described on section 

2.2. , with the main goal of providing the network operation as well as service controllers with measures of: 

i) node and link availability; ii) node and link popularity (betweeness); iii) node and link similarity. 

For that, we consider a specific context (control) plane, where context follows the original definition [6] 

presented in section 2., and integrates three different categories. The context can be related to the usage, 

user or the network context. In usage context, the context plane considers time and space characterization 

of device and services (e.g., resources such as CPU or energy; categories of apps). In user context,  the 

context plane integrates a time and space characterization of individual user roaming behavior (habits). 

While in network context, the context plane considers a time and space characterization of local networking 

conditions, i.e., a device’s neighborhood and its relations towards that neighborhood, over time and space. 

The user is seen as a carrier of a mobile object. Its context is captured non-intrusively via local connectivity 

(external) as well as on device usage (internal). By non-intrusive it is meant that this service takes advantage 

of the natural networking footprint that is overhead by devices, be it via Wi-Fi, Bluetooth, as well as any 

other means (e.g. LTE Direct). Our current implementation efforts are focused on short-range wireless in the 

form of Wi-Fi and Wi-Fi Direct.  

The context plane takes care of the collection, storage, and resolution of the context data. Data collection 

(capture) is performed seamlessly and directly via the usual wireless and mobile interfaces as well as via 

native applications for which the user configures interests or other type of personal indicator preferences. 

For instance, an application can request a one-time configuration of categories of interests such as music, 

food, etc. Such meta-data is passed to the contextual manager, associated to the device identifier (e.g., 

UUID). Metrics derived from such contextualization are then passed, upon demand or periodically, to other 

planes, such as the routing plane. Storage is provided locally, on the device only. Resolution concerns utility 

functions that the CM integrates, to compute weights that can characterize the node and link measures 

mentioned above: betweeness, availability, and similarity. 

The context plane in UMOBILE is being implemented as a specific software module named Contextual 

Manager, CM, which in essence is a customer premises’ (background) service. The CM seamlessly captures 

wireless data to characterize a device's affinity network (roaming patterns and peers over time and space) as 

well as to characterize the device's usage habits and interests (internal device information). For the sake of 

the proof-of-concept under development in UMOBILE in Work Package 5 (WP5), the CM resides on an end-

user device, as illustrated in Figure 1. Despite being an autonomous service, it is being devised to integrate 

the UMOBILE End-User Service (EUS). The CM interacts with other UMOBILE modules (e.g. routing, naming, 

or services) via the provisioning of specific utility functions that provide indicators (e.g. routing costs and/or 

routing utility functions) of the social behavior of users to assist in more efficient data dissemination. 

Detailed information on the CM is provided in section 3.2 (Developed Tools). 



 

 

 

 

Figure 1: UMOBILE elements and whereabouts of the Contextual Manager. 

3. Developed Tools 
This section describes the tools  developed in task 4.2 in the context of data collection and inference 

measures. The two tools are PerSense Mobile Light (PML) [41] and the CM. 

3.1. PML 
PML  is a light version tool of the PerSense ™ product line of Senception.  This product line is a personal 

platform for interaction and communication with two main features: i) stimulation of interaction via learning 

and inference of daily routine context in a opportunistic way via wireless and mobile networks (“How was 

your day?”) and notifications to circles about such context (“let’s share!”); ii) secure communication 

anywhere, anytime (instant messaging, video calls). 

This light version aims solely at assisting researchers in capturing the natural networking footprint left 

around by devices, to assist in inference of roaming habits, and thus to assist in the network operation. 

Released in the project in May 2015 under LGPLv3.0, PML  captures information concerning a user’s affinity 

network (contacts derived from Wi-Fi Direct and Bluetooth) as well as concerning roaming habits, over time 

and space (Wi-Fi).  

The tool has been developed to assist the research community in gathering meaningful traces and develop 

scientific studies, by reusing the collected traces. Freely available for research purposes, PML can be 

extended upon request, and is one of the tools that shall be available via the UMOBILE Lab.  

PML stores all data locally on an SQLite database, for the period of one week, running in background. 

Additionally, each day the tool generates three different traceset reports automatically (and statically) at 



 

 

23h59 minutes. In June 2016, version 2.0 has been released, allowing, among others, for users to get three 

reports in csv format: i) roaming diary report (waypoints based on Access Points crossed); ii) affinity network 

report (peers); iii) visited networks of the device (Access Points to which the user connected to). The reports 

can be checked via File Manager (stored as a compressed zip file), as well as sent by e-mail via the PML 

menu. 

Each row in the roaming diary report has the following fields: id, bssid, dayoftheweek, ssid, attractiveness, 

dateTime, latitude, longitude. id represents the sequential identifier of the AP waypoint crossed; ssid and 

bssid identify the AP; dayoftheweek is an integer corresponding to the day of the week, starting by Sunday 

as 1, and ending with Saturday (7). Attractiveness is a binary field stating whether or not the device 

connected to the respective AP: if connected, attractiveness is set to 1; 0 otherwise. dateTime provides the 

day and time when the device entered the range of the AP. Latitude and longitude provide the coordinates 

of the device. 

The visited networks’ report has the following row format: id; ssid; bssid; timeon; timeout; dayoftheweek; 

hour. id represents the sequential identifier of the AP waypoint crossed; ssid and bssid identify the AP; 

timeon and timeout correspond to timestamps when the device enters the range of an AP, and when it 

leaves such range. dayoftheweek is an integer corresponding to the day of the week, starting by Sunday as 1, 

and ending with Saturday (7). Hour corresponds to the 24-hour timeslot of the day. 

The affinity network report provides a list of neighbors over time (affinity network). Each row has the 

following format: sequential identifier (id); identifier of the device (uuid); MAC address (MAC); date and time 

when the peer was last encountered (dateTime); GPS coordinates for the device.  

PML is set to provide high accuracy in terms of location, but works well if location services are set to low 

accuracy in order to spare battery. 

3.2.  The Contextual Manager Module 
The UMOBILE CM is a UMOBILE service that runs in background on end-user devices and that can be easily 

adapted to access points. Its ultimate purpose is to provide other UMOBILE modules with contextual 

awareness derived from: i) internal device usage; ii) external applications; iii) available network sensors. As 

described in deliverable D3.1, D3.3, as well as D5.1 and D5.3, the CM performs contextualization derived 

from data that is either directly captured via multiple sensors (currently, Bluetooth and Wi-Fi interfaces) as 

well as via external sensing applications, such as PML.   

A high-level perspective of the contextual manager software architecture is illustrated in Figure 2, where the 

color code reflects the current CM implementation status1. The CM architecture integrates three main 

modules: capture, storage, and inference. The CM Service runs in background and is the component 

responsible for initiating all of the software modules as well as all configured networking interfaces. It 

 

1 The CM is being implemented in the context of WP5 and its final version shall be released in month 36. The 

development of the CM can be followed via the Senception’s GitLab account: 

https://gitlab.com/UMOBILESenception/ContextualManager. 



 

 

ensures the modularity necessary for the easy plug-in of future sensors and classification modules. The CM 

service is also responsible for controlling data access in the local SQLite database, as well.  

In terms of external interfaces, the CM considers an on-demand as well as a periodic delivery of computed 

weights to routing (1,2), and to naming (3). 

 

Figure 2: Contextual Manager architecture. 

3.2.1. CM Data Capture 
The current CM version integrates three capture pipelines as illustrated in Figure 3: 

• Visited networks’ pipeline. Data is captured via Wi-Fi and derived from regular Wi-Fi scanning thus 

integrating Access Points that are in the range of the device. The visited network 

characterization considers the following indicators: 

o Id. Corresponds to a sequential identifier of the network. 

o Hashed SSID. Hashed SSID for the access point. 

o Hashed BSSID. Hashed BSSID for the access point. 

o Average visit duration. Corresponds to the average visit duration based on an exponential 

moving average of all visits’ duration in seconds. For APs that a device is within the range, 

but not authorized to access, such average visit corresponds to 0. 



 

 

o WeekArray. Corresponds to an array of size 7 (days of the week), where the visits on each 

day of the week are registered. 

o HourArray. Corresponds to an array of size 24 (hours of the day) where the visits on each 

hour are registered. For instance, if an AP is frequently crossed on Saturdays, then 

HourArray[0] would hold the number of visits to that AP, independently of the day. 

o Location: based on geographical coordinates, obtained via fused location. 

• Affinity network. Data is captured via Wi-Fi Direct as well as via Bluetooth, relying on regular 

scanning. The affinity network characterization considers the following indicators: 

o Hashed MAC for the peer2. 

o Peer device identifier (UUID) hashed. 

o Date and time for the last encounter. 

o Encounters. Number of times a peer is seen. 

o Location: geographical coordinates, obtained via fused location. 

• Resource usage. Data concerns device availability and hence, characterizes the use of internal 

resources over time and space (location) by capturing the following indicators: 

o Energy consumption over time and space. 

o CPU usage status over time and space. 

o Memory usage status over time and space. 

o Storage usage status over time and space. 

o Application usage over time and space. 

 

Figure 3: Data capture in the CM. 

In addition to the aforementioned pipelines, the CM is expected to gather data from native applications, 

e.g., configured interests or other type of personal indicator preference. For instance, an application can 

 

2 We are considering a single hashed MAC independently of the data capture being served via Wi-Fi or 

Bluetooth. 



 

 

request a one-time configuration of categories of interests such as music, food, etc. Such meta-data is 

passed to the contextual manager, associated to the device UUID. 

3.2.2. Storage Module 
The data captured by the CM remains solely on the device. The database is based on SQLite, and resides on 

internal memory (thus just being accessible via the application). Tables 1 to 7 store Visited Networks’ 

information per day, as illustrated in  

Figure 4, where Id corresponds to a sequential identifier of each visited network (for the purpose of storage 

only); BSSID and SSID correspond, respectively, to the hashed version of the visited network BSSID and SSID. 

Ranking corresponds to a measure of user preference of the visited network, based upon several 

parameters such as number of visits, average visit duration, as well as time gap between visits [21]. 

VisitStart and VisitEnd correspond, respectively, to the timestamps when the device is authorized to 

connect to an AP, and when the device disconnects/get disconnected from such AP. Latitude and longitude 

provide the geo-positioning coordinates of the device. 

Tables 8 to 14 correspond to the affinity network data collection, for which the format is illustrated in Figure 

5. Each entry corresponds to an encounter with a peer. Id is the entry sequential identifier; DeviceId 

corresponds to the hashed device identifier obtained via Bluetooth or Wi-Fi. MAC corresponds to the hashed 

MAC. Encounters is a variable that is incremented each time the node encounters the peer. The 

AverageEncounterDuration corresponds to an exponential moving average of the EncounterDuration. 

Latitude and Longitude provide the location where the peer was last seen. C and U  are measures, 

respectively, of the node’s betweeness and availability (rf. to section 3.2.3 for inference details), given for 

slots of 1 hours, collected over 24 hours. 

Table 15 holds data collected concerning resource usage. Each entry corresponds to a type of resource. 

Currently, the CM considers 4 types of resources: Energy, Storage, CPU, and Memory. Data is collected by 

recurring to the Android library UsageStats3. Each entry holds the entry identifier (Id); Type; an array of size 

24 holding the average usage of the specific resource per hour; DayofTheWeek, 1 (Sunday) to 7. 

 

3 https://developer.android.com/reference/android/app/usage/UsageStats.html. 



 

 

 

Figure 4: Format for the Visited 
Networks' data  collection (tables 
1 to 7). 

 

 

Figure 5: Format for the Affinity Networks' 
data collection (tables 8 to 14). 

 

 

 

Figure 6: Format for Resource Usage 
data collection (table 15). 

 

Table 16 is used to store application usage for multiple categories of applications in a similar format to 

resource usage as illustrated in Figure 7. The fields in this table are: Id (sequential entry identifier); 

AppName, standing for the application designation; AppCategory, which corresponds to the Google 

commercial application category, which is provided via the application. AverageUsageHour is an array which 

holds the application usage for each hour period in a 24 hours period. DayoftheWeek holds a value of 1 

(Sunday) to 7. 

The final table, table 17, is used to store the measures derived from the data inference module, as described 

in the next section. Each entry holds the sequential identifier Id; the time and date when the weight was 

stored (dateTime); weight C (node Eigencentrality); weight U (node availability) 

 

Figure 7: Applications Usage’, database format (table 16). 

 

 

Figure 8: Inference weights, database format (table 17). 

 

3.2.3. Data Inference Module 
The data inference module (rf. to Figure 9) takes care of using the different indicators stored, and combining 

them via different utility functions to characterize a node’s affinity network (neighborhood and its variation 

over time and space) as well as to characterize a node’s usage and to give a measure of similarity between 

adjacent nodes. 



 

 

 

Figure 9 CM inference module. 

To characterize a node’s affinity network, the CM relies on the collected indicators, which can be provided 

raw to other modules, or combined via the available utility functions. Currently, the CM can provide directly 

to other modules the following list of indicators for a node i as well as for the peers of node i, for a specific 

instant in time, or during a specific period of time (e.g., between 16 h and 18 h, or for 1 day): 

 Peer list. Corresponds to a list of hashed MAC addresses that identify the nodes around node I 

during the specified time period. 

 Resource status. The CM provides the requested resource status (e.g. battery status, or storage 

status) for node I as well as for all the peers of node i during the specified time period. 

 Connectivity status. Provides the minimum, average, and maximum values for connectivity period 

for each node during the specified time period. 

 Encounter duration. Provides the minimum, average, and maximum values for  encounter duration 

for node i towards its peers during the specified time period. 

 Node Degree. Provides the average node degree for node I during the specified time period. 

 Visited network rank. Provides the rank of a specific visited network for each of the peers of node i. 

To characterize usage, the CM can provide directly to other modules the following indicators  per day and 

per hour: 

 Status of resources (e.g., 100% of battery at 10 a.m.; 10% at 11 a.m.; 80% of free storage at 10 a.m.). 

 Most used application categories. Maximum of ten categories of applications for a node.  

As mentioned before, these indicators can be passed on demand or periodically from the CM to other 

UMOBILE nodes. Furthermore, the CM inference module integrates different utility functions to provide 

other modules with weights for betweeness, usage, as well as level of similarity between different nodes, as 

explained next. 



 

 

3.2.4. Inference module, utility functions C, A, and I 
Based upon the different collected indicators, the CM inference module periodically4 computes three 

different weights and stores it in the inference table (cf. Figure 8): 

• C.  Corresponds to the affinity network level of node i and measures a node’s centrality, i.e., 

a node’s popularity.  

• A. Corresponds to the internal usage weight of node I and measures the availability of the 

node. 

• I: measures the (eigenvector) similarity between the selected resources of a node and one of 

its neighbors. For instance, I can provide a measure of battery similarity over time between 

nodes. Or, it can provide a measure of similarity between categories of applications. 

3.2.4.1. C: Node Centrality 

In what concerns a node centrality, there are several measures that can be considered. To select a specific 

measure of centrality, the following assumptions are relevant: 

 The more visited networks a node has over a period of time, the more central a node is (increases 

the possibility for data transmission). 

 The higher the number of connections a node has over a period of time, the more central a node is. 

 The higher the node degree of node over a period of time, the higher is its centrality. 

 The lower the distances traversed by the node are, the higher is its centrality. 

Several measures of centrality could have been considered to implement the mentioned assumptions. For 

instance, degree centrality provides a measure of centrality based on the number of peers around (the more 

connected a node is, the higher the centrality is). Closeness centrality is another possible measure based on 

shortest-distances; however, it does not work well in disconnected networks (as may be the case in 

UMOBILE scenarios).  Betweeness centrality takes into consideration the number of shortest-paths that a 

node holds, and for UMOBILE, this may not always be relevant, as the focus is on information-centricity.  

We therefore consider as basis for centrality the Eigenvector centrality definition [38]. Eigenvector centrality 

of a node (also known as Eigencentrality) is a measure of that node’s influence in the network. Eigenvector 

centrality provides a measure of the node’s popularity based also on its neighbors’ popularity and is derived 

from degree centrality. Our version of Eigencentrality follows this line of thought, but instead of considering 

the degree of neighboring nodes, it considers a centrality weight based on encounter duration and number 

of encounters for each neighbor, p(i). Equation 1 describes C(i) as well as p(i). 

 

 

4 Currently, the costs are computed every 10 minutes. The time window adjustment will be done upon 

validation, during the deployment of the UMOBILE proof-of-concept, WP5. 
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Equation 1: C, measure of a node;s centrality derived from Eigenvector centrality. 

 

3.2.4.2. A: Node Availability 

Node availability is derived from the node’s usage rate over time and space. In usual IT terms, the metric 

used to measure availability concerns the percentage of time that a system is capable of serving its intended 

function. U is based on such notion, taking into consideration a composition of the multiple captured device 

resources per hour. Hence, the first step in measuring node availability concerns the computation of node 

resource usage r(i), given in Equation 2.  

r(i) is computed based on the relative usage of each resource, namely, energy level; used memory status; 

used CPU status; used storage status. The lower each of these resources, the higher the resource usage r(i) 

is. The energy level status has more weight than the other components, as an energy drain causes more 

impact in the availability of the device. t corresponds to the sampling interval, currently set for 10 minutes. 

Then, on each hour, r(i) is stored based on an exponential moving average. 
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Equation 2: r(i), resource status weight computation. 

The availability of the node for a time period T is provided by U (cf. Equation 3) which is computed based on 

a specific time window T and takes into consideration all of the hourly values of r(i). 
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Equation 3: U, measure of a node’s availability. 

3.2.4.3. I: Similarity 

Similarity is the third measure provided by the CM to other UMOBILE modules, and it is a link measure, i.e., 

it provides a correlation cost between a node and its peers based on cosine similarity. Similarity is associated 

to a specific set of resources, e.g. visited networks; affinity network; app category, resource usage. 

An example is as follows. Let us assume that node i has a set of application preferences corresponding to  

Music, Art and represented by the set A=[1,1,0,0,0,0,0,0,0,0,0,0]  While node j has as main preferences 

Music, Literature, represented by the set B=[1,0,1,0,0,0,0,0,0,0]. The similarity weight I is computed as in 

Equation 4 and corresponds to 0.5. 
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Equation 4: Similarity weight I based on cosine similarity. 

This value can therefore be provided based on the different resources. To provide an example let us assume 

that we want to understand the similarity of the U weight between node i and its peer j over a specific 

period of time, e.g. 3 hours, where r(i)=[0.1, 0.3, 0.7] and r(j)=[0.7,0.5,0.7]. The similarity for resource battery 

between nodes i and j based on I would correspond to 0.378. Such analysis can assist in a better selection of 

peers for data transmission, for instance. 

3.2.5. Interfaces 
The CM interfaces concern other UMOBILE modules which may reside on the same node or not. For the sake 

of explanation we assume, however, that all modules are placed in the same end-user device.  

The interfaces currently being deployed are: 

 Routing interface (rf. to Figure 1, arrow 1 and 3).  

o The routing module can perform specific requests to the contextual manager, to get i) a set 

of indicators for a specific time window; ii) inferred values C, U, and I. 



 

 

o Periodically (currently set to 10 minutes) the CM sends values C,U, I, and the set of peers 

with the respective affinity network indicators. 

 Interface to NREP. The interface between the Contextual Manager and NREP is bi-directional and has 

two different operational states (rf. to Deliverable D4.3): 

o NREP can perform a request to the Contextual manager to get a set of priorities (indicators) 

for a specific time window. 

o NREP can get (periodic) notifications for specific sets of indicators. 

3.2.5.1. Example, Routing 

In this section an example for a routing interface based on context similarity is provided. The definition of 

the routing computation as well as forwarding strategy is out-of-the-scope of this deliverable, but it can be 

followed in UMOBILE publications under development as well as in the deliverables of WP3 and WP5. 

One important feature of NDN lies in the roles that are envisioned for routing and forwarding. Unlike the 

classical IP world where the forwarding is fixed, NDN offers the possibilities to implement strategies that can 

go beyond the simple Longest-Match prefix rule. The CM routing interface provides the routing module with 

period information concerning a node’s centrality (C) and a node’s availability as well as with the I similarity 

weight between peers. It is then up to the routing module to perform decisions on how to forward data. 

Hence, the CM provides the routing module with interface ranking. For each name prefix in a RIB, a node 

therefore ranks the Faces based on C,U. The routing considers an additional measure D - time lapse between 

forwarding an Interest packet and getting data. D is therefore an indicator of distance (time) to the data (to 

the nearest copy). The routing then forwards Interest packets (control packets) through the Faces holding 

the highest ranks.  

The Face ranking therefore increases with C and with U, and decreases with D. For the routing, C and U 

provide an indication of potential success in data transmission, while D reflects transmission quality. 

4. Experimentation 
Throughout this section, a visited or encountered wireless network corresponds to a wireless hotspot, and 

identified by a wireless Access Point (AP) SSID. While a connected wireless network or AP corresponds to a 

network that the user crosses and attaches to (uses the Internet).  

The distance between visited wireless networks has been computed based on the latitude and longitude for 

two points identified as (lat1,long1) and (lat2, long2)  by relying on the haversine formula given in Equation 

5, 

6371*)))12((*)290((*)190(())290((*))190((((*1000 longlongRCoslatRSINlatRSinlatRCoslatRCosArcCos   

Equation 5: distance computation based on geographical coordinates. 

where: 

• ArcCos(x) gives the arc cosine of x (argument in radians). 



 

 

• Cos(x) gives the cosine of x in (argument in radians). 

• Sin(x) gives the size of x (argument in radians) 

• 6371 corresponds to R, the earth’s radius in meters 

• R(x) corresponds to x in radians. 

Roaming time corresponds to the time period during a day (over 24 hours) when the device first gets 

connected to a wireless network, until the device shuts down its wireless operation for the day.  Connectivity 

time corresponds to the time period during a day (over 24 hours) when the device actually engages in 

Internet access via a wireless network. Therefore, if during a day a device connects to two different APs for 

periods of 1 hour, then the connectivity time for that day is of 2 hours. 

4.1.  Experiment I – Human Wireless Roaming Habits Study 
This first experiment aimed at a better understanding of  whether or not wireless tracking would be enough 

to characterize one's roaming behavior statistically; up to which point users that share social daily affinities 

(e.g. similar social routines) would exhibit similar roaming based on wireless; if the roaming routine could be 

characterized over time and space with some granularity (e.g. days, hours minutes). To look for answers to 

the mentioned questions, data was captured via seven different devices having PML installed and running 

for 24-hour periods, between the period of November 13th 2015 and December 18th 2015, in Lisbon, 

Portugal. Some of the carriers of these devices shared affiliation (4 in 7). The extracted traces [40] hold 

information such as encountered and accessed wireless hotspots (SSIDs and BSSIDs); duration of visits; geo-

positioning; whether or not the device was connected to a specific hotspot, for how long and for how many 

times. Our study has considered time and spatial characterization. A longer version description is available 

via an initial technical report [5]5.  

Roaming time corresponds to the time period during a day (over 24 hours) when the device first gets 

connected to a wireless network, until the device shuts down its wireless operation for the day. Connectivity 

time corresponds to the time period during a day (over 24 hours) when the device actually engages in 

Internet access via a wireless network. Therefore, if during a day a device connects to two different APs for 

periods of 1 hour, then the connectivity time for that day is of 2 hours. 

4.1.1. Scenario A: Users with Strong Daily Routine Similarity 
A first set of experiments in this study relied on two devices carried by users that share in their regular 

wireless routines some visited wireless hotspots and social routine interests (e.g. share affiliation; go to the 

same bistro), having carried the devices around for a period of 4 weeks in November and December 2015. 

Both devices were Android 5.1 smartphones with PML installed. This experiment was set to understand 

whether or not there is a roaming pattern for users based on wireless visited APs, and to characterize such 

roaming patterns in statistical terms, both in time and in space.  

 

5 Publication under submission, 2017. 



 

 

4.1.1.1. Time Characterization  

Figure 10 depicts results obtained concerning the daily pattern of roaming time vs connectivity time, where 

the X-axis considers the 28 days observed, and the Y-axis corresponds to 1-hour periods over 24 hours. In 

terms of roaming times, both users exhibit a very close pattern where in average the roaming time is 

between 15 hours and 18 hours. This means that out of 24 hours, the devices have wireless coverage for 

around 15 hours. This period is significantly higher than the currently period of 8 hours often applied in 

networking simulations. Furthermore, there are at least three distinguishable usage peaks which should be 

considered and which seem to be tied to the daily habits of people. This is relevant not only in terms of 

modeling; it also shows that tracking and monitoring via Wi-Fi is today achievable with a reasonable level of 

accuracy. 

 

Figure 10: Roaming time characterization. 

4.1.1.2. Spatial Characterization 

The spatial characterization of human wireless roaming routine embodies multiple aspects, of which we 

have considered two: i) distance traversed between crossed wireless networks (average, minimum, and 

maximum); ii) encountered and connected hotspots. The aim is to understand whether or not tracking is 

achievable also in terms of the spatial routine of users, and up to which point users visit new networks, or 

are they regularly hopping between the same wireless networks. 

Figure 11 characterizes maximum and average distance findings for user1 and user2, in terms of distance 

between two consecutive encountered wireless hotspots. The X-axis corresponds to the 28 days observed 

(day 1 being a Friday), and the Y-axis corresponds to distance in meters, shown in a logarithmic scale. In the 

figure, the minimum distance is not illustrated, as it has been found to always be 0.9 or 0 meters, possibly 

due to the way the Android fused location API provides information concerning overlapping APs (e.g., APs in 

the same building). Maximum (circa 10 kilometers) and minimum (0.9 meters) distances are similar for both 

users. Average path distances between two consecutive wireless hotspots are also similar. On days 9 and 10 

(a weekend), user1 had the device on the same position, and hence distances between visited wireless 

networks were null. Days 23 and 24 (corresponding to a weekend) exhibit higher average and maximum 

distances, which is a consequence of larger paths being traversed (unusual patterns for both users). In terms 

of maximum and average distances, there is an observable similar pattern. Relevant to highlight is that on 



 

 

weekends (days 2,3; 9,10; 16,17; 23,24) the distances are actually similar to the distances observed in 

working days, even though the devices connected time in weekends is lower than in weekdays. 

 

Figure 11: Distance characterization. 

The total number of APs encountered during visits is similar for both users, and quite high: as shown in 

Figure 12, in average both users cross over 1000 wireless networks. What is interesting to reveal is that 

despite the density, both users exhibit patterns where they daily connect to a maximum of 6 APs, which is a 

huge discrepancy in comparison to the APs available.  

Based on the traces obtained, we can state that this is not just a consequence of having most APs closed; in 

fact, this discrepancy actually relates to the daily activity of the users, as can be seen in the networking 

analysis in section 5.1.3. The average encountered wireless networks is quite high and exhibits a strong 

correlation. The sum provided for both encountered and connected wireless networks corresponds to the 

period of the 28 days, with an impressive 28268 networks for user1 and 23250 wireless networks for user2. 

As for connected networks, both users share similarity, connecting in average to 4-5 wireless networks per 

day. The maximum number of connected networks observed was between 14-16. 

 

Figure 12: Encountered vs. Connected APs. 



 

 

4.1.1.3. Scenario B: Weak Daily Routine Similarity 

On a second set of experiments we have analyzed the behavior of two devices that have a low similarity in 

daily activity. The users carrying the devices are user2 (from the prior experiment) and user3. Users carrying 

these devices share affiliation partially, i.e., they are on the same affiliation place for circa 4 hours per day. 

The traces have been collected for one week, from 27.11.2015 to 03.12.2015. user2 carries an Android 5.1 

smartphone device, while user3 carries an Android 5.0 device with PML installed.  

4.1.1.4. Time Characterization  

Figure 13 provides the daily patterns of roaming time vs connectivity time for both users. The X-axis holds 

the 7 days observed (day 1 corresponding to Friday 27.11.2015), and the Y-axis holds time. 

In terms of roaming times, both users exhibit periods above 15 hours, meaning that out of 24 hours, the 

devices have wireless coverage for over 15 hours. From a pattern perspective, there is again a reasonable 

correlation level between the usage of both devices. 

When comparing these results to the results extracted for two users that share a strong correlation in terms 

of daily routine (cf. Figure 10), it can be observed that all roaming times exhibit usage for over 15 hours, 

while connected times exhibit usage for over 8 hours per day. 

 

 

Figure 13: Roaming time characterization. 

4.1.1.5. Spatial Characterization 

Figure 15 characterizes the maximum and average distance findings in terms of distance between two 

consecutive encountered wireless hotspots, where the X-axis corresponds to the 7 days observed (day 1 

being a Friday), and the Y-axis corresponds to distance in meters, shown in a logarithmic scale. While 

maximum (circa 10 kilometers) and minimum (circa 0.9 meters) are similar, the average path distances 

between two consecutive wireless hotspots are close but not always similar (e.g. Saturday and Tuesday). 



 

 

 

Figure 14: Distance characterization, experiment II. 

Figure 15 depicts the total number of APs encountered vs. connected for both users. Such value is again 

significantly high, reaching over 1000 wireless networks in some days (e.g. Saturday for user2; Monday for 

user3). The number of connected wireless networks shows a huge discrepancy in comparison to the APs 

available. Similarly to what happened in the last experiment, we analyzed if this could be just a consequence 

of closed APs. In fact, the reason for this behavior relates with the roaming routine of the user, as we 

observed that users connect to the same wireless networks over time repeatedly.  

 

Figure 15: Encountered vs. Connected APs. 

The sum provided for both encountered and connected wireless networks corresponds to the period of the 

7 days for both users is still impressive. User2 crossed 5950 wireless networks, having used 41 (even though 

these are the same wireless networks, as the user relies on average in 5 to 6 wireless networks). While user3 

crossed 2910 wireless networks, having used 11 (even though in average the user prefers 2 specific wireless 

networks). 



 

 

4.2. Scenario C: Variable Daily Similarity 
On a third set of experiments we have considered 5 different devices having collected data for a period of 7 

days, from 11.12.2015 to 18.12.2015, being users user1, user2, the users from the previous experiments. All 

users share affiliation partially, i.e., they are on the same premises together for around 5 hours per day. 

Users have been selected in terms also of their wireless roaming experience, namely: user1 and user2 are 

users heavily connected; user4 is an average connected user; users 6 and 7 exhibit low wireless usage. 

4.2.1. Time Characterization  
Table 1  shows the statistical analysis to assist in better correlating results obtained for the different users. 

The difference in terms of wireless usage shows that the routine of heavily connected users is in average 

above 15 hours, while the routine for the users (user6, user7) less engaged in wireless roaming can be as low 

as 2 hours per day. This is also a consequence of the fact that user6 and user7 had their devices off during 

weekends and is an aspect that requires more traces to allow us to better understand the time differences 

between low and high wireless usage. 

Table 1: Roaming Time and Connectivity Time Correlation. 

 

4.2.1.1. Spatial Characterization 

The correlation between the results observed for the average, maximum, as well as minimum distances is 

provided in Table 2. The average distances between wireless networks are nonetheless again quite small 

(hundred meters) and show that the paths traversed have a strong density, relevant in terms of wireless 

tracking.  



 

 

Table 2: Distance correlation. 

 

The greater variability is observable in the maximum distances. This seems to be a consequence of the fact 

that in some days some of devices seemed to be off, and not necessarily a consequence of the path diversity 

that the users may cross. We intend to better analyze this aspect in already ongoing research. 

The total number of APs encountered during visits shows the usage difference between users per day and is 

given in Table 3, which provides a statistical analysis for the correlation of the obtained results.  

Table 3: Visited networks correlation. 

 

The number of connected wireless networks shows again a strong discrepancy in comparison to the APs 

available. For this experiment this is both a consequence of the daily routine of users, as well as a 

consequence of the fact that some readings were not obtained.  



 

 

The sum provided for both encountered and connected wireless networks corresponds to the period of the 

7 days for all users is still significant and shows that even for the cases of users that attain a low wireless 

usage footprint, tracking is achievable. 

4.3.  Experiment II – Social Interaction with Children 
A second, larger and interdisciplinary experiment has been conducted in May 2017, with the purpose of 

giving insight into social interaction analysis in children. For this purpose, an interdisciplinary team involving 

Senception, COPELABS (a team of social psychologists) as well as a school in Lisbon (Escola EB 2,3 Pedro 

D’Orey da Cunha, Damai) has been run6. The experiment counted with 80 children aged 11 to 16 from 8 

different classes of the same school, and involved 8-10 teachers and involved data collected with PML as 

well as social psychology surveys provided to children. The experiment had the purpose of assisting three 

main studies, currently under publication i) analysis of contact and prejudice in children; ii) analysis of well-

being and spaces; iii) Study on clustering and time correlation of roaming habits/mobility patterns in 

children. Traces are expected to be publicly available until month 36. 

The methodology for this experiment was as follows. Out of this set, 50 children were allowed (by their 

parents) to carry PML either on their smartphone, or on a smartphone provided to them. The data collected 

concerned roaming context during the school schedule (8a.m. to 5p.m.). 

During a first week (Time I, 04.05.2017-12.05.2017) the children answered questionnaires with the school’s 

educational psychologist. During the same period, installation of the software occurred. The data has been 

collected between 05.05.2017 until 06.06.2017. By the end of the month (Time II, 29.05.2017-05.06.2017), 

the children have again answered surveys, and data was extracted from PML.  

In this report we provide a first analysis concerning clustering aspects of the collected data set concerning 

peer sightings. In Figure 16 a summary of the clustering analysis for affinity networks involving the 50 

children is provided. The file has been treated to remove peers that could be other type of devices, e.g., TVs 

or printers.  The resulting number of nodes correspond to the devices seen by the 50 children (source 

nodes). This implies that there are devices corresponding to the other children as well as “foreign” devices. 

As shown, the average path length is of 3 and the average number of neighbors corresponds to 5. 

 

Figure 16: clustering analysis, school children experiment with PML light. 

 

6 The data analysis is currently being developed. In this report we provide an initial subset of results for 

clustering properties. 



 

 

A first clustering analysis was developed by recurring to the tool Cytoscape. A Cytoscape network has been 

formed having as source nodes the devices that did the PML readings; destination nodes corresponding to 

the peers; interconnection corresponding to time. Figure 17 provides the network layout where nodes 

correspond to the different devices; color reflects a continuous mapping of the node degree (the lighter the 

color the smaller the node degree, observed between 1 and 77); size reflects betweeness centrality. The 

nodes are placed in accordance with latitude (x position) and longitude (y position), and the links reflect the 

shared interaction over time.  

 

Figure 17: School children network, organic layout where the shared interaction corresponds to time (peers and time correlation). 

 

Figure 18 provides a geographical distribution of the clusters where each color represents a different 

student. The concentration over time and space relates with the fact that the study was performed during 

school hours. 



 

 

 

Figure 18: Distribution per latitude and longitude.  

 

Figure 20 provides the neighborhood connectivity, where the red line corresponds to a Power Law line, R-

squared value of 0.745, and holding a correlation of 0.846. Figure 20 corresponds to the shared 

neighborhood distribution, where the most frequent groups are formed by 1 or 2 peers. Hence, in this study 

children have a tendency to cluster in small groups. In terms of betweeness centrality (cf. Figure 21, where 

the red line corresponds to a fitted Power Law with correlation = 0.716 and R-squared equal to 0.492), there 

are not a significant number of nodes that concentrate a higher level of between centrality, which seems to 

imply that the different clusters exhibit a similar pattern of interaction over time and space. 

 

 

Figure 19: Neighborhood connectivity distribution. 

 

Figure 20: Shared neighborhood distribution. 

 

 



 

 

 

 

Figure 21: Betweeness centrality distribution. 

5. Conclusions 
In this deliverable we present the UMOBILE contextual plane, explaining the relevancy of such a plane in the 

context of UMOBILE. The deliverable corresponds to the outcome of task 4.2, and the main goal of this task 

was to give insight into i) how to develop mechanisms for processing of sensor data through context 

understanding; ii) to show how such mechanisms apply in UMOBILE, and why they are relevant. 

The deliverable starts by introducing context-awareness, its role in networking as well as in UMOBILE. It then 

describes the contextual plane of UMOBILE, detailing its modules, and how it interacts towards other 

modules. The contextual plane, supported in the UMOBILE proof-of-concept by the Contextual Manager 

service, is currently being developed in the context of WP5. 

The deliverable gives insight into the tools that were developed for the purpose of assisting 

contextualization in UMOBILE, and describes experiments that have been pursued, providing as well open-

access traces collected during such experiments. 

In addition to the implementation of the CM (WP5), further experiments are being developed to assist the 

validation of the CM. Such additional experiments shall be detailed in the context of WP6, dissemination. 
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