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Executive Summary 

Background 

Work Package 5 “Overall platform integration and validation” of UMOBILE project 

evaluates the solutions developed in the project. This Report is written in the framework 

of Tasks 5.1 “Definition of the validation of the setup” and 5.2: “Evaluation through 

Simulation and Emulation” of UMOBILE project. These two tasks aim to validate the 

architecture and services, derived from results developed in WP3 and WP4.  

The ultimate objective of UMOBILE is to advance networking technologies and 

architectures towards the conception and realization of Future Internet. In particular, 

UMOBILE extends Internet (i) functionally – by combining ICN and DTN technologies 

within a new architecture -, (ii) geographically – by allowing for internetworking on 

demand over remote and isolated areas – and (iii) socially – by allowing low-cost access 

to users but also free user-to-user networking. 

 

Objectives 

This document focuses on the description of the UMOBILE system components from a 

functional point of view. Furthermore, this deliverable presents the validation setup of 

the overall system. This entails defining the setup and assets involved in the validation 

scenarios, use cases, operational and environmental conditions, measures of 

performance, and measures of effectiveness. There will be both component and system-

level validations. The platform is also evaluated through a series of planned simulations 

and emulations.  
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1. Introduction 

The UMOBILE project aims to introduce new paradigms in the provision and consumption 

of the Internet connectivity by developing a mobile-centric service oriented architecture 

that efficiently delivers content to the end-users. To this end, UMOBILE provides an 

architecture that merges information-centric networking (ICN) with delay tolerant 

networking (DTN) in order to efficiently operate in different networks situations, 

reaching disconnected areas and users and providing new types of services. This 

architecture allows decoupling services from their origin locations and shifting the host-

centric paradigm to a new paradigm that incorporates aspects from both information-

centric and opportunistic networking. 

The solutions defined and prototyped in WP3 and WP4 work packages give a glimpse of 

the specific performance and/or functionality improvements developed within the 

project. In order to demonstrate the performance and efficiency of UMOBILE architecture 

within a testbed, we have selected some specific use-cases identified in the WP2 for the 

purpose of feature demonstration. More specifically, we focus on two demonstrations: the 

first one covers both the emergency and the civil protection scenarios, and the second 

demonstration targets the service announcement and social routine scenarios, which both 

are presented in detail in the deliverable D5.3 [1]. The aim of this document is to present 

each of the individual components of the UMOBILE platform, their features and their 

corresponding validation and evaluation. 

This document is organized as follows: in Section 2 we describe the UMOBILE platform 

and their components according to functional blocks. Following, we present the 

simulation platform used to evaluate the different services and functionalities in Section 

3. Each of the UMOBILE services and their corresponding validation by means of 

simulations or experimental tests is presented in Section 4. Finally, the conclusions are 

drawn in Section 5. 
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2. UMOBILE Platform 

In this section we describe the UMOBILE platform and where each of their elements are 

located. In addition, we outline all the elements of the platform and explain them. 

2.1. Overview 

Figure 1 is well-known as it has been used during the whole project to illustrate the 

UMOBILE platform. It shows a high-level description of the UMOBILE platform in a 

specific scenario. There are two domains: the UMOBILE domain; this is the NDN-DTN area 

where the UMOBILE platform provides services to end users, and the Internet domain 

where we can find IP communications. Following Figure 1, thanks to UMOBILE Hotspots 

and UAVs and thanks to D2D communications and WiFi, the platform provides access to 

Internet based on NDN-DTN paradigms. UMOBILE routers create an NDN network. 

UMOBILE Gateway allows reaching Internet thanks to the de-encapsulation of NDN 

traces. The service manager is in charge of the service migration to UMOBILE hotspots. 

UMOBILE 
Hotspot

Isolated
UMOBILE 
Hotspot

Internet

WiFi Direct 
Group

UMOBILE 
Domain

Internet 
Domain

UMOBILE Gateway

Service
Manager

UAV

Content
Provider

UMOBILE 
Router

UMOBILE 
end-user

 

Figure 1: Overview of the UMOBILE platform 
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Figure 2 extends the concept of Figure 1 as it contains different scenarios where the 

UMOBILE platform can operate including the one that Figure 1 describes. Moreover, it 

adds a new actor, the ISP, locating its premises in the UMOBILE ecosystem. In order to 

provide compatibility with existing mobile user devices, we devise the UMOBILE platform 

as a layer working on top of IP, where IP is used as a network enabler but only on a hop-

by-hop basis and is linked to the wireless connectivity. 

In Figure 2 we illustrate three different ways of connecting the area where UMOBILE is 

providing service to end-users with UMOBILE services. As, in UMOBILE, NDN is 

encapsulated on top of IP, the first way of connecting the area is through the IP network 

of the ISP and through the internet. The traces reach ISP’s premises and they are de-

encapsulated in the UMOBILE Gateway. A second way is directly through an entire NDN 

public network. The last one corresponds to Figure 1 and proposes to build an NDN 

network thanks to UMOBILE routers. 

 

Figure 2: Functional blocks of the UMOBILE platform 
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The actors involved in the UMOBILE architecture include: 

 UMOBILE Hotspots: collect and relay relevant information, host some instantiated 

services or store collected data, check its validity and perform computational 

functions to increase the value of the information to the civil authorities. Some of 

these hotspots will be isolated access points (APs) providing specific services 

 UMOBILE gateway: provide interconnectivity between UMOBILE domain and the 

Internet domain. 

 UMOBILE service manager: implement the functionality that the Service Provider 

needs to deploy his services. 

 UMOBILE end-user service: send and receive, as well as carry and forward data, 

based on an opportunistic networking approach. 

The demonstrators, detailed in D5.3 [1], highlight use cases covered by the UMOBILE 

platform, which is characterized by a WiFi network set-up in which some UMOBILE 

hotspots are collocated with a gateway. 

UMOBILE is being developed as a modular software architecture, where some modules 

may or may not reside in a specific hardware element. For instance, we envision that the 

Service Manager will only run on end-user devices, while the contextual manager will be 

developed to run in end-user devices, as well as APs. Nevertheless, modules such as the 

Routing Module or the Forwarding Strategies will be applicable in different locations. 

2.2. UMOBILE Hotspots 

The UMOBILE hotspot is deployed in the fixed part of the network or on-board mobile 

nodes (e.g., UAVs), enabling a multitude of network-related operations. In particular, 

these devices employ the UMOBILE platform to cache content, to execute services, to 

allow for granular QoS and QoE application interfaces as well as to ensure data delivery 

even under adverse network conditions. UMOBILE-enabled hotspots collect and relay 

relevant information (e.g., alert messages, instructions from emergency authorities), host 

some instantiated services or store collected data, check its validity and perform 

computational functions (e.g. data fusion) to increase the value of the information to the 

civil authorities. 

2.2.1. UMOBILE UAVs 

UMOBILE-enabled UAV devices collect and relay relevant information and connect two 

isolated areas, they are a specific case of a UMOBILE hotspot. The UAVs are equipped with 

WiFi to create a local communication infrastructure: the UAVs are instructed to perform 

manoeuvres that maximize the area covered and enable communication with other 
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equipment in the area. UAVs can be used as well to collect the emergency message and 

forward it until it reaches the authorized emergency entity. 

The selected equipment for UMOBILE is the AR4 from TEKEVER presented in Figure 3. 

The AR4 Light Ray is a small tactical, hand-launched UAV for ISR (Intelligence, 

Surveillance, and Reconnaissance) targeting the defence market. With an endurance of 2 

hours and a range of 20km it is designed essentially for over-the-hill operations. It weighs 

about 5kg and is capable of carrying up to 1kg payload, having been validated and battle 

proven by multiple security and military forces. 

 

Figure 3: UAV setup 

The AR4 can carry multiple options for Electro-optical, sensors, up to 4K definition, which 

could enable transmission of high-resolution image and video that could help in the 

management of the scenario. 

In order to assess UAV use as hotspots, the WiFi signal strength in the ground will be 

measured when the UAV is flying in different altitudes and locations. The transmission of 

short messages through the UAV will be the main objective to be achieved. However, if 

possible, the UAV could be used to permit the transmission of other data, namely in 

coordination with the data link used for telemetry and control. 

2.3. UMOBILE Gateway 

UMOBILE-enabled gateways provide interconnectivity between any opportunistic 

UMOBILE device and the fixed IP network by translating interest packets to HTTP 

requests and vice versa. Such devices can be employed by service and content providers 
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to act as repositories, being able to store data received through the IP network and then 

share it over the UMOBILE network (or vice-versa) upon request. In the framework of the 

UMOBILE project, the focus is placed only on service and content sharing over the 

UMOBILE network. 

UMOBILE Gateway can be part of the infrastructure of service/content providers or civil 

authorities, being employed as repositories supporting both the IP and the UMOBILE part 

of the network. In particular, UMOBILE Gateway can be utilized by providers as their 

point of entry into the UMOBILE network, connecting their legacy IP-based infrastructure 

with other UMOBILE nodes, as depicted in Figure 2. This point of entry is normally 

expected to reside in the provider’s premises. Depending on the deployment model (an 

option is to follow the one devised in [5]), though, any UMOBILE hotspot can act as 

Gateway, if it is equipped with an IP interface and sufficient storage and processing 

power. The gateway assumes its role by providing universal access to content or services 

located in both the host-centric and information-centric domain. For example, when a 

service exists in the IP domain that can be deployed in the UMOBILE part of the network, 

it can be “fetched” by the UMOBILE gateway – with the help of the Service Manager – and 

stored there. It is then made available to the UMOBILE users by the repository, who can 

choose to download and deploy it as they like. In essence, the gateway provides a 

common pool of shared services and information between the two domains, assisted by 

the service migration mechanisms. 

As a UMOBILE node itself, a UMOBILE Gateway is employing the full UMOBILE platform, 

being, thus, able to forward data over the DTN interface if required. 

2.4. UMOBILE Service Manager 

UMOBILE is being developed as a modular software architecture, where some modules 

may reside or not in a specific hardware element. For instance, we envision that the 

Service Manager will only run on end-user devices, while the contextual manager will be 

developed to run in end-user devices, as well as APs. Nevertheless, modules such as the 

Routing Module or the Forwarding Strategies will be applicable in different locations. 

The Service Manager is a piece of software that implements all the functionality that the 

Service Provider needs to deploy his services, including disk space to store both services 

and compressed images. In Figure 1, the Service Manager is strategically deployed on a 

computer directly connected to the Gateway. This deployment simplifies the task of 

transferring compressed service images from the global Internet to the UMOBILE Domain. 
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2.5. UMOBILE End-User Service 

In this section we specify the different software components that are part of the UMOBILE 

platform. 

The UMOBILE End-User Service (UES) integrates different software modules that allow 

UMOBILE services to be delivered with adequate levels of QoE and QoS to end-users. The 

UES integrates the following: 

 UMOBILE Background services that assist in better data transmission, and 

service delivery with adequate QoS and QoE levels. 

o KEBAPP, to enable users to share the applications present in their mobile 

devices. 

o NREP, name-based replication system limited by time and space within a 

certain geographic area and with specific life expectancy. 

o NDN-OPP, to assist opportunistic routing (device-to-device 

communication) thus taking advantage of opportunities and 

interest/contacts in proximity, to exchange data. 

o Contextual Manager. The contextual manager is a UMOBILE module that 

resides on end-user devices and that captures both external (roaming) and 

internal (usage) data, to assist a better network operation (e.g. 

opportunistic routing; priorities in terms of resource management; interest 

match in terms of data dissemination). 

 List of UMOBILE native applications. In addition to services migrated, UMOBILE 

integrates a set of novel applications such as Oi!, Now@, RoutePlanner. Via the 

UMOBILE End-User Service, the user can then select specific applications, which 

support natively intermittent connectivity. 

The UES is being devised in a modular way, to ensure that it can be run in regular end-

user devices such as smartphones, tablets, laptops and, even, Raspberry PIs. 
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3. UMOBILE Simulation Platform and Methodology 

In this section, we describe the different simulation tools that are used to evaluate the 

efficiency of the different UMOBILE components. As a fully integrated UMOBILE platform 

does not exist at this stage of the project, no single simulator is used; instead we opt for 

the simulators that are most relevant to the individual modules with respect to the 

functionalities being assessed. We note that the current deliverable also includes module 

evaluation reports provided by real deployments, but these are not the focus of this 

section; instead, we focus only on simulations. Relevant information concerning 

validation tests can be found on the appropriate sub-sections of Section 4. 

As far as evaluation by simulation is considered, we leveraged three specific platforms: 

ns3, ndnSIM and ONE. Each of these platforms focuses on different network settings and 

scenarios, so the modules assessed played a crucial role for the simulator being used. 

Below, we provide some basic information about the simulators and enumerate the 

specific UMOBILE protocols being evaluated on each one, while stating the reasons for the 

particular choice. 

3.1. ns3 and ndnSIM 

Network Simulator 3 (ns3) [19] is a discrete event network simulator primarily used for 

research and education, one of the most extensively used in the research community to 

test new network protocols. It is rooted on an open-source project started in 2006. It is 

the successor of the popular ns2 simulator that is no longer being developed, although it 

was not designed to be backwards compatible. 

NdnSIM is an extension to the ns3 simulator [21], implementing the basic components of 

the Named Data Networking architecture in a modular way. The design of ndnSIM follows 

the philosophy of network simulations in ns3, which devises maximum abstraction for all 

modelled components. This way, diverse and flexible experimentation over NDN is 

achieved allowing for different deployment needs (NDN over link-layer, NDN over IP etc.) 

which would be hard to test on current testbeds. 

ns3 is used to evaluate the In-Network Resource Pooling Protocol (INRPP). This decision 

is made as INRPP is a congestion control protocol primarily used for wired networks and 

ns3 is widely used for wired network topologies. There is also an extensive knowledge of 

the ns3 simulator at UCL, so the development and simulation process was greatly sped up 

by using the particular tool. 

NdnSIM evaluates the Opportunistic Off-path Content Discovery protocol (OOCD). Since 

OOCD is an improvement of the NDN architecture, a simulator designed for Named Data 

Networks is needed. To the best of our knowledge, ndnSim is the only simulator designed 

to simulate NDN networks. The choice is supported by the fact porting the ns3 code to a 
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real Linux NDN implementation is really straightforward when using ndnSIM. This is 

because the ndnSIM extensions required to support the proposed content discovery 

mechanism involves enhancements to the ndn-cxx library and the NDN Forwarding 

Daemon (NFD) components, which are exactly the components used in the real NDN 

implementation – also used in ns3 along with added wrapper libraries.  

3.2. ONE 

The Opportunistic Networking Environment (ONE) simulator [22] is a Java-based tool for 

opportunistic networks, offering a broad set of DTN protocol simulation capabilities in a 

single framework. It was designed targeting simulation and analysis of DTN routing and 

application protocols. The ONE simulator offers an extensible simulation framework itself 

supporting mobility and event generation, message exchange, DTN routing and 

application protocols, a basic notion of energy consumption, visualization and analysis, 

interfaces for importing and exporting mobility traces, events, and entire messages. 

In order to evaluate KEBAPP and NREP (the smart routing module might be also 

evaluated by these means, but this is still under study) we use ONE for its simplicity, 

flexibility and mobility traces provided. In this case, we do not require a full stack 

network simulator, like ns3, to evaluate NDN networks, but a simple simulator to evaluate 

our proposals with different traces for opportunistic networks. The ONE simulator is 

designed in a modular fashion, enabling extensions of virtually all functions to be 

implemented using well-defined interfaces, which allowed us to extend it to develop 

NREP and KEBAPP approaches.  
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4. UMOBILE Validation 

In this section we present the validation of the different components of the UMOBILE 

network devices and end-user services corresponding to software modules by means of 

experiments or simulations. 

4.1. In-Network Resource Pooling Protocol (INRPP) 

4.1.1. Description 

UMOBILE is developing in task 4.1 of WP4 a new congestion control protocol named In-

Network Resource Pooling Protocol (INRPP) aimed at improving congestion control in the 

fixed network by using caches as temporary custodians to deal with congestion locally, 

and using backpressure techniques to slow-down senders when necessary. D4.1 [3] 

discusses the first version of a congestion control protocol, called In-Network Resource 

Pooling Protocol (INRPP) that addresses congestion control in TCP/IP networks. It 

extensively covers the specifications for a Flowlet Congestion Control to be used in the 

fixed part of the network. The final version of this protocol will be completed in D4.2, 

including the development of the Flowlet Congestion Control to be used in the UMOBILE 

domain. 

In this first version of INRPP detailed in D4.1 [3], we assume that IP network routers 

possess caches, which are essentially large (i.e., bloated) buffers that act as custodians for 

the data transferred along the network paths. Data senders push data in the network in an 

open-loop, processor sharing manner, using the typical TCP protocol, but using a rate-

based congestion control set at the available rate at the sender interface. Data is stored in 

in-network caches using a FIFO policy when it hits bottleneck links and progressively 

moves (from one cache to the next) towards the destination in a hop-by-hop manner. At 

the same time detour paths are exploited to move data faster towards the destination. In 

case of increased demand, the system enters a closed-loop, hop-by-hop backpressure 

mode in order to avoid packet loss. When the backpressure reaches the last hop (the 

sender), the TCP protocol adapts its rate to the available throughput at the bottleneck of 

the network. In-Network Resource Pooling is, therefore, realised in terms of both in-

network storage and in-network detour decisions to exploit unused bandwidth in 

network subpaths. In that sense, feedback signals stay local (instead of having to 

propagate e2e) and move hop-by-hop together with the data. Per-flow fairness is assured 

at routers indexing the cached data by flow and pulling packets from the cache to be sent 

through the output interface from a different flow each time using a round-robin 

scheduler. The resulting INRPP eliminates packet drops, completes flows faster, allows 

senders to push all data of a flow faster inside the network and responds rapidly to 

changing network conditions. Our results show that flow completion time and fairness 
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improves by as much as 50% compared to RCP, MPTCP and TCP, under realistic network 

conditions. 

4.1.2. Demo Key Features 

This service is not planned to be implemented in real devices and deployed in the final 

demo. INRPP can work together with the service migration to improve QoS, which is 

going to be implemented and deployed in the final demo. In order to evaluate and 

demonstrate the good performance of INRPP we require a large scale network, therefore 

we will evaluate and validate INRPP only by simulations.  

4.1.3. Hardware and Software Requirements & Experimental Settings 

This software module does not impose any hardware requirement as it is being validated 

by means of simulations. 

4.1.4. Validation & KPIs 

We next engage in a detailed investigation of the performance of the proposed INRPP 

scheme in an infrastructure scenario by means of simulation. We compare the 

performance of INRPP with TCP, RCP, and MPTCP for various topologies and scenarios. 

We implemented INRPP in ns3 [19], ported the existing ns2 implementation of MPTCP to 

ns3 and used RCP's existing implementation for ns3. We use the New Reno version of 

TCP. 

We evaluated INRPP in a three different scenarios. The first one is a very simple topology 

(dumbbell topology), in order to show in detail, the operation of the different INRPP 

mechanisms detailed in Section 2.2. The second scenario is a simple multi-homed 

scenario where we can compare INRPP with not only single-homed transport protocols, 

such as TCP and RCP, but also multi-homed transport protocols, such as MPTCP transport 

protocol. The third scenario, is a more complex hierarchical scenario, where we can 

evaluate INRPP performance in a similar scenario that can be used for the service 

placement UMOBILE module (introduced in D3.3, Section 4.4), where communications 

take place in the Internet domain between central servers and service instances placed in 

the edge of the network.  

Dumbbell topology with a detour path 

We first evaluate a simple scenario using a dumbbell topology with a fully-connected core 

component (nodes 0, 1, and 2), depicted in Figure 4. The purpose is to show in detail the 

operation of the different INRPP mechanisms in a simple setup. This topology has a 

bottleneck link (link 0-2) with 10 Mbps capacity, but it also has another 10Mbps capacity 

one-hop detour path (link 0-1-2) that can be used to extend the bandwidth available at 

the bottleneck. Hosts have access links with 40Mbps bandwidth capacity, and links 4-0 
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and 2-3 have more capacity than the rest of the links. We pair the senders (three hosts on 

the left) and the receivers (three hosts on the right), and each sender initiates a single 

flow to its receiver pair. The three flows from the senders are initiated with one second 

gap in between. Each flow has the same size of 10 MB, and the size of each router cache is 

set to only 1.25 MB in order to demonstrate the activation of the backpressure 

mechanism, which eventually propagates to the sender. We set the packet size to 1500 

bytes. Router interfaces buffer size is set to 50 ms worth of traffic using Drop Tail and link 

latencies are 5 ms. We simulated the scenario using INRPP, RCP and TCP. In this scenario, 

we do not evaluate MPTCP since no hosts are multi-homed, and therefore there is no 

possibility of establishing multiple sub-flows between peers. 

 
Figure 4: Detour simple scenario 

 

Table 1: Dumbbell topology simulation results 

Protocol AFCT Fairness 
Fairness 

different RTTs 

INRPP 10.50s 0.9945 0.9972 

RCP 25.96s 0.9934 0.9994 

TCP 19.08s 0.8902 0.8321 

 

In Table 1, we observe the average flow completion time (AFCT). We see that INRPP 

complete the flows much faster than TCP and RCP, because INRPP is using all the 

bandwidth available in the bottleneck, plus the bandwidth available in the detour path, 

when TCP and RCP is only using the bottleneck link capacity. In Figure 5, we demonstrate 

the goodput at the receiver in bps. With INRPP (top figure), we observe that the 

bandwidth is shared equally between the existing flows and there is no fluctuation when a 

new flow arrives. Particularly, the first flow starts at second 1 and is transmitted at 

20Mbps using both the bottleneck link and the detour path shown with an arrow in 

Figure 4. When the second flow starts at second 2, the capacity is immediately shared 

between the two active flows (10Mbps each), while when the third flow starts at 3 
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seconds the available bandwidth is immediately split between the three active flows (≈ 

6.66 Mbps per flow). When flows start completing, the existing flows adapt their rate and 

share the bandwidth no longer used by the completed flow. With TCP (bottom figure), on 

the other hand, we can observe that the goodput at the receiver is erratic and fluctuates 

excessively. TCP shares the bandwidth equally; however, it needs time to adapt to the 

new flow arrivals. Even after all the flows begin, the goodput oscillates continuously 

throughout the simulation due to the saw-tooth behaviour of the congestion window of 

TCP. In contrast, RCP does not have such oscillation in goodput, but we see that RCP also 

requires time to adapt and share the bandwidth between flows efficiently. In this simple 

scenario, RCP's slow adaptation to arriving flows is more pronounced due to the small 

number of flows: RCP shares the bandwidth among flows by estimating the number of 

active flows, and when the number of active flows is small, this estimation is less accurate; 

that is, the error rate is higher when the estimation is, for instance, off by one. The slow 

adaptation of RCP to arriving flows leads to worse AFCT than TCP in this scenario. 

 
Figure 5: Receiver goodput 

In Table 1, we observe the fairness during the simulation. To measure it, we first compute 

the Jain's index on the instantaneous throughput of flows, sampled every 10 ms 

throughout the simulation, and then take the average of the samples to obtain a single 

average fairness value, shown in the third column. In order to demonstrate that INRPP is 

not affected by diverse RTT path, we also evaluated fairness for heterogeneous access link 

latencies: 50, 100 and 200 ms. With homogeneous RTTs, we observe that INRPP and RCP 

fairness is close to the optimal with TCP having the worst fairness because of throughput 
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oscillations. With heterogeneous RTTs, on the other hand, we observe that TCP fairness 

becomes even worse, while INRPP and RCP fairness is maintained close to 1, given their 

rate-based transmission pattern.  

Multi-homed topology 

In this second scenario, we aim at evaluating INRPP in a multi-homed scenario where we 

can compare it with a multipath transport protocols, such as MPTCP. MPTCP can exploit 

more than one path and establish multiple sub-flows to take advantage of available sub-

paths. It is, however, constrained to end-host multi-homing and can therefore, take 

advantage of e2e paths only. We evaluate the scenario depicted in Figure 6 where two 

paths can be used in parallel when using MPTCP (link 0-1 and link 2-1). MPTCP senders 

are multi-homed and are connected to node 0 and 2 at the same time, while the MPTCP 

receivers are single-homed and connected to node 1. MPTCP users establish two sub-

flows, one for each pair of source, destination IP addresses. In addition, we also evaluate 

INRPP/TCP/RCP connecting the senders to node 0 and the receivers to node 1 only. This 

way, TCP and RCP will use only the path across link 0-1 (the shortest path) and INRPP will 

use this path as the main option, but will also be able to use the detour paths 0-3-1 and 0-

2-1. The network parameters are the same as in Section 4.1, however, here, we increase 

the cache size to 12.5MB (size proportional to the link bandwidth equivalent to 10 

seconds of traffic); the end-points have 100 Mbps links. 

 

 
Figure 6: Multi-homed topology scenario 

We evaluated this scenario using a Poisson Pareto Burst Process (PBPP) to model 

Internet traffic. We used 1000 flows with Poisson arrivals with a  rate determined by the 

offered load of the network , where  ( is the average flow size and  

the capacity of the link), that we set to 0.9. Flow sizes are Pareto distributed with shape 

equal to 1.2. Note that this scenario is beneficial for MPTCP because it is a symmetric 

scenario. MPTCP behaviour can be worse when using highly asymmetric paths (in terms 

of bandwidth or latency) (such as 3G and WiFi) because of issues caused by disordering. 

In some of the simulations we also added cross-traffic in the link 0-1. Cross-traffic is 
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added through UDP flows that come in every 15 s, consume half of the bandwidth 

(5Mbps) for 5 s and then leave. 

 

 
a) AFCT for E[L] = 30 

 

 
b) AFCT for E[L] = 500 

 

Figure 7: Multi-homed AFCT w/o cross traffic 
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Figure 7 shows the AFCT for different flow sizes when there is no cross-traffic in any of 

the links. We present the AFCT for all protocols using . In Fig. 14(b), we present 

results using . In Fig. 14(a), we observe that the AFCT of both MPTCP and 

INRPP are much lower than TCP or RCP. In this case, TCP does not differ significantly 

from RCP since we have a larger number of flows in the simulation and RCP's estimation 

of number of active flows is more accurate. However, RCP does not outperform TCP 

because the number of active flows is still not large enough for RCP to reduce its error 

rate in estimating the number of active flows. 

The performance of RCP and TCP is substantially inferior compared to MPTCP and INRPP, 

because neither RCP nor TCP can use more than one path to send data. When comparing 

only MPTCP and INRPP we can see that INRPP clearly outperforms MPTCP, providing 

shorter flow completion times (up to around 50% in some cases), and therefore using the 

network resources more efficiently than MPTCP. First of all, MPTCP is not able to use all 

the detour paths available. MPTCP can use more resources than TCP, but at the same time 

it also inherits its limitations: First of all, MPTCP is an end-to-end resource pooling 

mechanism, and therefore, cannot exploit mid-path resources as INRPP does with the 

residual bandwidth available in detour paths. Secondly, AIMD-based MPTCP faces drops 

and timeouts, that most of the time does not imply a significant increase in AFCTs, but 

mainly causes poorer fairness performance – see Table 2. In fact, the chances of packet 

drop and timeouts in MPTCP increase linearly with the number of sub-flows. This is 

shown by the substantially worse fairness performance in case of short flows (see 

in Table 2). 

 
a) AFCT for E[L] = 30 
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b) AFCT for E[L] = 500 

 

Figure 8: Multi-homed AFCT with cross-traffic in link 0-1 

 

Figure 8 shows the AFCT, but this time with the cross-traffic pattern previously explained. 

In Figure 8(a), we present the AFCT for all protocols using and in Figure 8(b), 

we provide results using . In this figure, we observe again that INRPP 

significantly outperforms all other protocols. In this case, the flow completion time of RCP 

and TCP clearly gets worse due to the cross- traffic. However, the AFCT increment 

because of the cross-traffic, using MPTCP or INRPP, is almost imperceptible compared 

with RCP and TCP. When using RCP or TCP, the cross-traffic generates more load than the 

link can absorb. When using MPTCP or INRPP alternative path(s), which do not use link 0-

1, can be used to forward traffic in excess. Therefore, the multipath capability diminishes 

the impact of cross-traffic on AFCT. 

In Table 2, we show the average fairness for the previous simulation. In all cases, INRPP 

presents the best performance, except for , where RCP provides only 

marginally better fairness than INRPP. 

  



 

25 

Table 2: Average fairness using random flow sized in the multi-homed topology 

Protocol 
No cross-traffic With cross traffic 

    

TCP 0.8205 0.8575 0.4321 0.8883 

RCP 0.9301 0.9589 0.7569 0.9959 

MPTCP 0.6103 0.8947 0.6104 0.8515 

INRPP 0.9298 0.9895 0.8225 0.9897 

 

Rocketfuel topology 

In this last scenario, we evaluate INRPP in a real, large-scale topology. For that purpose, 

we use the 3257.pop.cch network topology1 as provided through the Rocketfuel dataset. 

Spanning over the European continent, the 3257.pop.ch topology has V = 440 routers and 

681 bidirectional links. Out of the 440 routers, 267 are edge routers (with degree less 

than 3), 126 are gateway routers (i.e., connected to an edge router and has degree larger 

than 2), and 47 backbone routers. A total of 13350 senders and receivers are connected to 

the edge routers and flows are established randomly in the same way than previous 

topologies. We randomly pair each sender with a receiver and start a flow from each 

sender to its pair, which makes a total of 6675 flows. In this scenario, we start these 6675 

flows with an offered load of the access link  and a . All the links have 

the same capacity of 1 Gbps except the links connecting edge routers with gateway 

routers and users with edge routers, which have 100 Mbps capacity. In this scenario, we 

can have multiple bottlenecks and multiple detour paths in the network. Here, we also 

compare INRPP against RCP, TCP and MPTCP, where users are multi-homed with two of 

the edge routers uniformly randomly distributed.  

 

 

 

                                                 
1
 https://github.com/cawka/ndnSIM-sample-topologies/blob/master/topologies/rocketfuel_maps_cch/3257.pop.cch  

https://github.com/cawka/ndnSIM-sample-topologies/blob/master/topologies/rocketfuel_maps_cch/3257.pop.cch
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Figure 9: AFCT for the rocketfuel topology 

In Figure 9, we show the AFCT for the different flow sizes, using the same PBPP process, 

previously described. We observe that even in this challenging scenario, INRPP clearly 

outperforms RCP and TCP (by at least 50%) in terms of flow completion time, but also 

MPTCP. It does so because INRPP can take advantage of available residual bandwidth, 

even when it is available for very short time-intervals, e.g., milliseconds, to detour excess 

traffic. INRPP can also take advantage of the in-network multiple paths because of the 

hop-by-hop congestion control. MPTCP is not able to take advantage of all the bandwidth 

available in all paths because of the e2e design limits the knowledge of the in-network 

paths to deal with congestion. We can conclude that dealing with congestion locally using 

INRPP is better than the e2e congestion control used by RCP, TCP or even MPTCP given 

that the topology has detour paths and nodes possess caches. 

4.1.5. Use case mapping 

This service is not demonstrated in the proof-of-concept. 

4.2. Opportunistic Off-Path Content Discovery (OOCD) 

4.2.1. Description 

In ICN, routing and forwarding is based on uniquely identified and authenticated content 

identifiers/names, rather than end-host addresses [6]. Thus, in ICN, content can be 

transparently delivered from any cache-enabled in-network device (e.g., router), as long 

as this device holds a valid copy of the requested content and the request traverses it. 
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Apart from the optimization of the caching strategy, another important part of the in-

network caching research in ICN is the actual content discovery mechanism, namely the 

mechanism to direct content requests to the right cache mainly to increase cache hit ratio 

and minimize content delivery latency. Content discovery, or else, request to cache 

routing can follow one of two approaches, either opportunistic on-path routing, where 

content is searched on-path as the request is travelling towards the content source, or 

coordinated off-path resolution-based, where requests are forwarded off the shortest 

path to some designated cache that is likely to hold this content. The off-path resolution-

based routing is a deterministic solution which maps requests to content items cached in 

nearby (or not) nodes, usually at predetermined rendezvous points e.g., [7]-[10]. 

Though off-path resolution-based content discovery mechanisms produce relatively small 

extra traffic in the network, they introduce considerable amounts of 

coordination/communication overhead and delay and as such, result in inherently less 

scalable solutions. On the other hand, on-path content discovery mechanisms provide a 

probabilistic solution, but with inherently limited gain that can be increased by 

decreasing the correlation of the cached items in the routers of the network. Both on-path 

and off-path caching and content discovery present trade-offs. On-path mechanisms 

require less coordination and management, but may provide limited gains. Conversely, 

off-path techniques can attain higher hit rates at the cost of extra co-ordination and 

communication overhead. We try to combine the merits of both worlds by using 

traditional on-path mechanisms enhanced with a lightweight off-path content discovery 

approach that requires from each router to keep track of only a minimal amount of 

information in order to locate content. 

Particularly, we enhance the NDN router architecture with a new component called 

“Downstream Forwarding Information Table (D-FIB)”, which keeps track of the direction 

(i.e., next hop) in which the Data packets were sent in the past. The newly introduced D-

FIB is combined with scoped interest forwarding techniques in an attempt to decrease the 

delivery latency of requested items and increase the cache hit rate of the system, by 

exploring the caching capabilities of nearby routers. In order to support the proposed 

operation, we also introduce an Off-path Forwarding Flag (OFF) bit to the Interest packet 

to distinguish whether it is following the FIB entries towards the content origin (OFF is 

set to zero by the corresponding forwarding router), or is heading towards the direction 

of users with similar satisfied interests. For the second case, when OFF is set to one by the 

forwarding router, the Interest packet follows matching entries in the D-FIB of each 

passing-by router. We also introduce a Total Forwarding Counter (TFC) to control the 

total number of Interests that will be generated from a single data request as explained 

below. More details of the OOCD proposal will be provided in the final version of the 

architecture design in D3.2 and D3.4, to be submitted at the end of the project. 
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4.2.2. Demo Key Features 

This service is not planned to be implemented in real devices and deployed in the final 

demo. In order to evaluate and demonstrate the good performance of OOCD we require a 

large scale network, therefore we will evaluate and validate OOCD only by simulation 

4.2.3. Hardware and Software Requirements & Experimental Settings 

This software module does not impose any hardware requirement as it is being validated 

by means of simulations. 

4.2.4. Validation & KPIs 

For the evaluation of the proposed discovery scheme we used, after adequately extending, 

ndnSIM [11] (version 2.1) —an ns3 based, packet-level simulator. The extensions to the 

ndnSIM simulator required to support the proposed content discovery mechanism 

involved enhancements to the ndn-cxx library and the NDN Forwarding Daemon (NFD) 

components. Enhancements to the ndn-cxx library allow the Interest packets to carry an 

OFF bit, which is set when an interest is forwarded downstream and a Total Forwarding 

Counter (TFC) field. The NFD library was upgraded to include the D-FIB interest 

forwarding mechanisms. Each of the new Interest forwarding mechanisms is 

implemented as a new strategy in the NDN forwarding strategy layer. Finally, the data 

processing portion of the NFD was slightly modified to add new entries to the D-FIB table 

as data packets are processed. 

We use the 4755.pop.cch network topology as provided through the Rocketfuel dataset 

[12]. Spanning over the Asian continent, the 4755.pop.ch topology has V = 191 routers 

and 242 bidirectional links. Out of the 191 routers, 148 are edge routers (with degree less 

than 3), 39 are gateway routers (i.e., connected to an edge router and has degree larger 

than 2), and 4 backbone routers. We consider a scenario where the content item 

population is  and requests are generated to the network with a rate 

equal to . 

Requests are generated in the network with rate , where denotes the 

aggregated incoming request rate (in requests per second) for content item . The 

request rate for each item is determined by its popularity. Here we approximate the 

popularity of the items by a Zipf law of exponents . Our evaluation is based on the 

following metrics: 

 Cache Hit Ratio (in % of issued interests): It is the percentage of the interests that 

have been satisfied (found the requested item) from a cache/router of the network 

(off-path and on-path). 
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 The Minimum Hop Distance (in hops): It is the number of hops travelled by the 

(first) data arriving at the user from a responding router or the content origin for 

each successful request. This metric is indicative of the transfer delay as a function 

of hops in the network. 

 The Mean Traffic Overhead (in hops): It is the mean number of hops that the 

initiated Data packets travel in the network, until they are discarded or reach the 

consumer, for each satisfied interest. 

Our simulation setup consists of a set of consumers (i.e., hosts) each connected to exactly 

one edge router, and for each request, one of the consumers is selected uniformly random 

as the originator of the request. We use a simplified scenario with a single producer (e.g., 

large content cache) acting as the content origin for all the requests, and it is conveniently 

located near the core of the network1 with direct links to two randomly chosen backbone 

routers. In a real deployment scenario, the distance between the content origins (e.g., 

CDNs, content providers) and consumers can be more than just a few (router-level) hops. 

In fact, the content origins can be one or more domain-level hops away from the 

consumers, which could translate to significant latency in the end-to end communication. 

Therefore, our results comparing the hop distances when fetching content from the origin 

with the hop distances when fetching the content from the routers’ caches can be thought 

of as the best-case scenario; in reality the additional distance that needs to be covered to 

reach a content origin is expected to be more than just a few router-level hops.  

In all the experiments presented below, we observe the network over a duration of one 

hour, following an hour of “warm-up” phase during which the requests are forwarded 

using NDN’s default strategy and the D-FIB table and content caches are populated during 

data processing. Finally, we assume without loss of generality that the routers have the 

same storage capacity and that each responded packet is cached in all routers along the 

return path. This caching policy is also known as Leave Copy Everywhere (LCE) and is the 

default policy in NDN [14] ( ). 

In Figure 10 we depict the impact of the cache capacity, expressed as the fraction of the 

items population that can be stored in the cache (i.e., CS component) of a router. A first 

and straightforward observation is that the usage of the proposed forwarding strategies 

leads to ⇡100% increase in the cache hit ratio compared to the traditional NDN strategy. 

Particularly, we observe that when the cache capacity of each router is only 0.5% of the 

total item population, almost 30% of the total issued requests can be satisfied from the 

caches within the network, whereas the NDN’s default strategy only manages to satisfy 

less than 14% of the requests from the on-path caches.  
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a) Cache size / Content population 

 

 

b) Cache size 
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c) Cache size / Content population 

Figure 10: The impact of the cache capacity of each router in the performance of the examined forwarding 

strategies 

Additionally, the newly proposed strategies also manage to decrease the hop count (i.e., 

latency) for the retrieval of content items. For both of the proposed strategies, the 

minimum hop distance is reduced by approximately 10% when the cache size of each 

router is only 1% of the content population. In a real deployment scenario, we expect the 

difference to be larger as the requests will travel outside the network to fetch content. 

Therefore, the consumers would potentially accrue more benefit from the increase in 

cache hit rates as this translates to better QoS for users, namely the latency in obtaining 

data. From the comparison of the two proposed downstream interest forwarding 

strategies we observe that the all strategy performs slightly better regarding hit ratio 

compared to the one strategy, but at the cost of slightly increased network overhead. Note 

here that we assumed only three extra quotas (i.e., TFC is equal to three plus the shortest 

path length (SPL) in hops to the origin). This means that both strategies manage to double 

the cache hit ratio of the system initializing only a very small number of downstream 

interests. In the rest of the experiments presented below, we set the capacity of the 

routers to 0.5% of the total item population. 
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a) D-FIB/Cache size 

 

 

b) D-FIB/Cache size 
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c) D-FIB/Cache size 

Figure 11: The impact of the D-FIB size in the performance of the examined forwarding strategies 

The D-FIB table on each router has a limited size and entries follow an LRU replacement 

policy. As such, the size of D-FIB also affects the performance of the proposed forwarding 

strategies, since small D-FIB sizes means that even if there are cached copies at nearby 

routers, the lack of entries in the D-FIB of routers cannot exploit them. In Figure 11, we 

depict the impact of the DFIB size, expressed as the ratio of the router’s cache size. From 

the cache hit rate plot we observe that when the D-FIB size is less than the cache size of a 

router, the proposed strategies cannot retrieve any content exploiting off-path caches. 

This is due to the rate at which D-FIB entries are updated, which does not allow an 

interest for a piece of content to establish a trail for a similar future interest. Both 

strategies start to perform significantly well in terms of cache hit rates for sizes of DFIB 

that are at least 10 to 16 times larger than the cache size (i.e., in number of entries and not 

actual disk capacity).  
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a) Extra Quota 

 

 

b) Extra Quota 
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c) Extra Quota 

Figure 12: The impact of the TFC value in the performance of the examined forwarding strategies 

The TFC of each Interest packet is set to a predetermined value, by the first-hop router 

where the user who issued the request is attached to. In the above experiments this value 

is set to TFC = 3+SPL, where SPL is the shortest path length in hops from each router to 

the origin server and extra quota is set to 3. In this section we examine the performance 

of the proposed forwarding scheme for different values of extra quota (note that the 

values in the x-axis of Figure 12 are additional to the SPL, which is obtained by the first-

hop router from its FIB table). From Figure 12 we observe that increasing the TFC value 

does not increase the hit ratio. On the contrary, a large TFC value slightly decreases the hit 

ratio of the system. This is mainly due to the LCE policy, since a large TFC value means a 

larger number of downstream interests. This, in turn, results in more duplicate responses 

and merely in a higher rate of cache replacements. In other words, a single interest that is 

multicast towards many different directions results in duplicate responses of the same 

data packets that will be cached along the paths towards the user and replace already 

cached content. This increases the correlation and redundancy of cached data in the 

network and minimizes the probability of future interests for different content to find 

matching cached content. For cache probabilities set to around 50%, the hit ratios slightly 

increase with increasing TFC value, but we do not present these results due to space 

limits. 

Table 3: Request satisfaction rate of the first requests for different extra quota values 

   

-2 26.3% 26.3% 

-1 31.3% 31.3% 
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0 91.3% 91.3% 

1 98.5% 98.5% 

2 99.2% 99.7% 

3 99.7% 99.9% 

… … … 

11 100% 100% 

 

In Figure 12, we also consider negative and zero extra quota values where TFC in each 

packet is set to extra quota+SPL. A request packet carrying a negative quota can only 

retrieve the content from a router’s cache since the TFC allowance will be spent before 

reaching the content origin even when the request follows the shortest path. As 

mentioned before, the first hop router is responsible for setting the TFC value in the 

packets and also for retransmitting interests when the previous attempt is not successful. 

The TFC value can be set according to different goals. If the primary goal is to reduce the 

percentage of requests that reach the content origin and minimize the overhead of 

duplicate data packets, then the first hop router can initially try a negative quota value 

(e.g., -1). When the request is not successful in returning data, larger quota values can be 

used in the retransmitted requests. On the other hand, if the primary goal is to obtain the 

data at first attempt and thus increase QoS, the TFC value in the request can be set to a 

positive value to guarantee retrieval of data. Table 3 shows the satisfaction rate of first 

requests (i.e., excluding retransmissions) for various extra quota values for the “one” and 

“all” forwarding strategy. For negative extra quota values, the satisfaction rate of the first 

requests is below 32%. However, for zero extra quota value, the satisfaction rate reaches 

91% and only 59% of the queries reach the content origin, whereas 32% of the queries 

are satisfied from the caches. The overall performance and overhead of the proposed 

forwarding mechanisms do not differ significantly, due to the sparseness of the ISP 

topology that we used in our experiments. However, their performance differs more 

significantly for denser topologies that we have also examined, but not depicted due to 

space limitations. 

4.2.5. Use case mapping 

This service is not demonstrated in the proof-of-concept. 

4.3. Named-based replication 

4.3.1. Description 

UMOBILE will develop in task 4.3 of WP4 a mobile name-based replication system, where 

message replication will be limited by time and space within a certain geographic area 
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and with specific life expectancy, optimised by prioritisation rules considering emergency 

messages more important than other messages, e.g., messages between friends.  

Based on the algorithms designed in the task, we plan to prepare a demo to show the key 

features of the proposed system. The demo would consist in some mobile users in a 

certain area and some access point (AP) or fixed devices. These mobile devices would 

have restricted capacity (memory and/or battery). During the demo an emergency 

service will coexist with other services such as instant messaging or a video delivery 

service. We plan to use WiFi Direct as a main communication technology, but we don’t 

discard yet the use of Bluetooth or WiFi Aware capabilities for this task.  

4.3.2. Demo Key Features 

This service will demonstrate in the proof-of-concept: 

 Successful emergency message delivery rate 

 Message delivery restriction in a certain area and time space 

4.3.3. Hardware and Software Requirements & Experimental Settings 

First, we will provide a validation of this service by means of simulation. At the end of this 

project, this service will be integrated and showcased in the final proof-of-concept. To 

that aim, the following hardware and software will be required: 

 Smartphone devices with Android OS: Samsung Galaxy Tab A and Android 6.0.1 

 Mikrotik routers with OpenWrt 

4.3.4. Validation & KPIs 

We will include an evaluation performed with ONE simulator, once ready for D4.3.  

4.3.5. Use case mapping 

This service will be showcased in the emergency scenario use-case proof-of-concept 

presented in deliverable 5.3 [1]. 

4.4. Keyword-based Mobile Application Sharing (KEBAPP) 

4.4.1. Description 

The Keyword-based Mobile Application Sharing (KEBAPP) framework enables users to 

share the applications, e.g. route planner, which they have on their mobile devices with 

nearby users that want access to processed information, which their own applications 

cannot provide. In a sense, the client application instance can also act as a server instance 

in order to serve requests from nearby users. 
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4.4.2. Demo Key Features 

KEBAPP will provide access to processed information to mobile users in connectivity 

restricted scenarios enabling mobile application sharing between users and/or users and 

AP, when users have no Internet connectivity but other users or UMOBILE devices can 

provide this information locally. This way, UMOBILE users will be able, for instance, to 

recompute paths (using a developed UMOBILE service) under emergency situations even 

without Internet connectivity or with connectivity restrictions, when the user discovers 

an AP or UAV offering the service. KEBAPP we will use WiFi and WiFi Direct 

communications to enable application sharing between users, and we will explore the 

possibility of using WiFi Aware capabilities to improve the discovery process. 

4.4.3. Hardware and Software Requirements & Experimental Settings 

KEBAPP is thoroughly validated in terms of simulations. Furthermore, we also 

experimentally validate it using the following requirements: 

 Smartphone devices with Android OS: Samsung Galaxy Tab A and Android 6.0.1 

 Mikrotik routers with OpenWrt 

4.4.4. Validation & KPIs 

KEBAPP is implemented over Android devices. Currently, we implemented KEBAPP in 

Android 6.0.1 and developed a sample application using Samsung Galaxy Tab A Tablets. 

We also modelled the application sharing framework approach in the ONE simulator [15], 

in order to evaluate the feasibility of the KEBAPP application sharing framework. 

For the evaluation of the proposed framework, we consider a KEBAPP-enabled tube map 

application that provides information on train lines and their respective schedule, as well 

as real-time information regarding delays, closed stations etc. We assume that a 

significant percentage of users commuting by tube have installed at least KEBAPP on their 

smartphones. In particular, we consider a common scenario where a commuter wants to 

know if there are any delays on the lines that he/she needs to take in order to reach 

his/her destination, as well as the estimated time of arrival to the destination. By 

exploiting the proposed shared application framework, a KEBAPP user can take 

advantage of different applications (within the same context) shared by other users that 

have recently entered the tube station. In particular, by using as input simple information 

such as current location and destination of a user, the devices of nearby users compute 

the estimated arrival time, along with the route that the user needs to follow, and send a 

reply back to the user. To evaluate the proposed application, we perform simulations 

based on mobility traces, from a subway station in downtown Stockholm2.  

                                                 
2 Trace was obtained from http://crawdad.org/kth/walkers/20140505/ 
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For different numbers of KEBAPP users (which reflect the KEBAPP-enabled application 

penetration rate), we examine to what extent route calculation requests are successfully 

responded by other user applications. In particular, we randomly select a subset of the 

trace nodes, as the KEBAPP users, and randomly generate route calculation requests 

during their short stay in the station. We assume that a request can be successfully 

responded by only a small percentage (1, 5, or 10\%) of the other KEBAPP users, which 

are also selected in random; this percentage corresponds to the users that have enabled 

the sharing capabilities of their KEBAPP application, and have access to the requested 

data, as well as sufficient battery level. We should also note that each commuter visits the 

tube station for a short period of time (i.e., with an average stay of around three minutes), 

so the probability that two users that run a KEBAPP application do not exist in the 

subway station simultaneously is high.  

All sets of simulations are repeated 1000 times. We measure the successful responses of 

route calculation requests, in terms of probability and response time. In particular, we 

measure: i) the average Response Ratio (RR), i.e., the fraction of the total generated 

requests that receive a successful reply, and ii) the average First Response Time (FRT), 

which is the average time between each request issue and the first reply, for those that 

are successfully responded. Note that in this preliminary experiment, we do not consider 

computation processing time and protocol-specific delays, as we do not focus on protocol 

implementation-details. 

  

 
Figure 13: Evaluation results 
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Our evaluation results, presented in Figure 13, show that, as expected, the response ratio 

increases with the KEBAPP-enabled application penetration rate, as well as the 

percentage of the sharing users. In particular, even with a small penetration rate, (when 

only 100 out of the 3300 commuters are KEBAPP users), the KEBAPP users have a chance 

to get a successful response. As shown in Figure 13, the lowest response ratio of 9% is 

achieved when only one other passenger (during the simulation period of one hour) can 

successfully respond to the user request. The probability of a successful response gets 

significantly higher when more users are willing to share their resources; this probability 

is increased by a factor of ~6.5 (from 9% with only one user sharing resources to 58.8% 

with ten users sharing resources out of 100 KEBAPP users). As the number of users 

increases, the response ratio approaches 100%. 

As far as average response time is concerned, we notice that response time decreases as 

the number of users that are sharing resources increases, since the user that issues a 

request is more likely to encounter such a user. In particular, the maximum average delay 

is observed at the lowest sharing ratio of 1%, and it spans from 17-29 seconds. For 

increased information availability, a user request can almost immediately find a match, 

within a few seconds. 

In that case, we have used a variety of movement models/patterns (included in the ONE 

simulator) in order to assess the efficiency of mobile content dissemination using 

KEBAPP. In that case, there are a set of users considered source nodes that are providing 

content to a set of users called destination nodes. We have used the Helsinki city 

population and city centre as the default urban environment (area of size equal to 8.3km x 

7.3km). By default, we assume that the population of the destination nodes is equal to 

1000, whereas the default population of the source nodes (nodes providing information 

to other nodes) is equal to 50. The distribution of source nodes is as follows: out of the 50 

nodes, we assume that 18 are buses that follow predefined routes, whereas the rest nodes 

(i.e., 32 in the default scenario) are assumed to be users that follow the working day 

movement model [16]. Destination nodes (nodes receiving content from source nodes) 

are configured as follows: out of the 1000 nodes 20% are assumed to be tourists. Tourists 

choose random destinations (either total random points in the map or one of the seven 

“points of interest” (i.e., tourist attractions) in the city centre) to which they travel 

following the shortest path and wait randomly 2 - 15 minutes. The majority of the 

destination nodes, i.e., the remaining 80%, are assigned the working day movement 

model, which allows them to travel to designated office spaces on the map and travel for 

other evening activities later in the day. All nodes start at their base/home and travel to 

their office, either directly by car (50% of nodes) or by bus (remaining 50%). Once they 

reach the office, they spend 7 hours there and at the end of the office day there is a 50% 

chance the node will go for an “evening activity” and 50% chance it travels home for the 

rest of the day. 
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Figure 14: The impact of the number of source nodes relay time in the satisfaction rate 

In Figure 14 we depict the impact that the number of source nodes have in the satisfaction 

rate (the percentage of the destination nodes with updated content over all destination 

nodes at the end of each application update period), that means the percentage of users 

that receive updates from a certain content directly using KEBAPP from other users 

without accessing the Internet. Note that the number of destination nodes is always equal 

to 1000 nodes, while the source nodes are always buses when source nodes are greater 

than 18, whereas when source nodes are less than 18 the remaining nodes are chosen to 

be nodes that follow the working day movement model. This option is more rational since 

tourists are usually visiting a place for a limited amount of time, whereas “workers” tend 

to stay in one place for longer periods. Destination nodes also relay messages with 

different configurations: No relay, Relay for 5 min only, relay for 15 only or relay the 

message only once. We observe exponential increase in the Satisfaction Ratio as the 

number of sources nodes increases. This increase is more pronounced for small relay 

times.  

Last, but certainly not least, we look into the energy consumption of user-operated CDNs. 

Energy is the price paid by the system in order to disseminate content in a D2D manner 

and therefore, cannot afford to be overlooked in our feasibility study. 

Table 4: Source nodes energy consumption results (1-hour summary, 41-62 messages) 

Message size: 5MB 50MB 100MB 

mWh 106.6 - 161.2 179.99 - 272.18 212.38 - 321.16 

% Battery phone 0.86 - 1.3 1.45 - 2.19 1.71 - 2.59 

% Battery tablet 0.41 - 0.62 0.69 - 1.05 0.82 - 1.24 
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Table 5: Relay nodes energy consumption results (1-hour summary, 3 messages) 

Message size: 5MB 50MB 100MB 

mWh 7.8 13.17 15.54 

% Battery phone 0.06 0.1 0.12 

% Battery tablet 0.03 0.05 0.06 

 

In Table 4 and Table 5 we show preliminary results using real devices (Galaxy Tab A 

tablet and Samsung Note 3 smartphone) and transmitting different file sizes using WiFi 

Direct. These results are obtained with two static devices separated by around 10 meters 

and with a RSSI value close to -50dbm. We carried out a set of experiments using 5 MB, 50 

MB and 100 MB of exchanged files and we extrapolated these results to the number of 

messages sent by source and relay during an update interval of 1 hour. We also 

extrapolated from this energy consumption the percentage of battery consumed using a 

tablet (i.e., 7000 mAh/25.9Wh capacity) or using a smartphone (i.e., 3200 mAh/12.4Wh 

capacity). The energy consumed by the WiFi Direct application is measured using the 

Trepn Profiler tool [17]. From Table 4 and Table 5, we can observe that the energy 

consumption for the ubiCDN source nodes goes from 106.6 mWh in the best case (41 

messages sent) when sending 5 MB messages, to 321.16 mWh worst case (62 messages) 

when sending 100 MB. This means the percentage of the battery consumed is between 

0.86% and 2.59% for a smartphone, and between 0.41% and 1.24% for a tablet. In case of 

relay nodes, the energy consumption goes from 7.8 to 15.54 mWh, meaning from 0.06% 

to 0.12% of the battery for a smartphone and 0.03% to 0.06% for a tablet, respectively. 

From this analysis we can consider that energy consumption is not a big issue. 

The results obtained in this energy consumption analysis, despite being preliminary with 

simple tests, are in line with the results presented in [18]. In [18] authors report that an 

average smartphone can transmit up to 44GB of data before depleting the battery, with an 

average consumption of a 1 J/MB (i.e., 1.38 mWh for a 5MB file) in a walking speed 

mobility scenario. 

4.4.5. Use case mapping 

The KEBAPP service is showcased in the civil-protection use-case proof-of-concept. 

4.5. IBR – DTN 

4.5.1 Description 

DTN is a technology that facilitates interoperable communications between different, 

intermittently connected networks. Like IP, DTN operates on top of existing network 

architectures, creating a DTN overlay. In particular, DTN extends internetworking in the 
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time domain: rather than assuming a continuous end-to-end (E2E) path as IP networks 

do, DTN operates in a store-and-forward fashion: intermediate nodes assume temporary 

responsibility for messages and keep them until the next opportunity arises to forward 

them to the next hop. While stored, messages may even be physically carried within a 

node as the node is transported: the model is also termed store-carry-forward. This 

inherently deals with temporary disconnections or disruptions and allows the connection 

of nodes that would otherwise be disconnected at any point in time. The core of the DTN 

architecture lies in the Bundle Protocol. 

IBR – DTN is one of the most popular, well-documented and maintained implementations 

of the Bundle Protocol designed for embedded systems. IBR – DTN can be used as 

framework for DTN applications; its module-based architecture with miscellaneous 

interfaces makes it possible to easily change functionalities like routing or bundle storage. 

A new face connecting the UMOBILE platform with the IBR – DTN daemon has been 

developed in the framework of the project. This allows the natural integration of NDN and 

DTN networking platforms and enables a whole set of new communication capabilities. 

4.5.2 Demo Key Features 

This service provides the following features: 

 NDN/IBR – DTN integration 

 DTN tunnelling functionality on an ICN network 

 Data exchange between UMOBILE nodes with intermittent connectivity 

4.5.3 Hardware and Software Requirements & Experimental Settings 

IBR – DTN is experimentally validated. To that aim, we required the following: 

 1 Linux desktop 

 2 Android smartphones 

 1 UAV 

 1 hotspot 

4.5.4 Validation & KPIs 

We have performed a successful initial assessment of the IBR-DTN integration into the 

NDN forwarding daemon (NFD), which constitutes the basis of the UMOBILE platform. 

The tests proved that the modules interact correctly and messages can be exchanged 

between them. Tunnelling through IBR-DTN has been also achieved, as packets have been 

proved to be forwarded correctly via intermediate nodes which only run the IBR-DTN 

daemon. This is a critical milestone, as it constitutes the basic functionality to be offered 

by the module. As long as the validation equipment is concerned, it consists of: 
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 Two Ubuntu 14.04 desktops running the integrated NDN/IBR-DTN 

implementation 

 Two Android 6 smartphones running the IBR-DTN implementation 

The basic information about the test settings is depicted in Figure 15: 

 
Figure 15: Evaluation setup for IBR-DTN 

 

Two different scenarios were orchestrated. The first one included a basic setting to 

validate the correct integration of IBR-DTN with NDN and tested the basic functionality of 

the module. The second one simulated challenging network conditions in order to assess 

functionality of the component under network stress, such as the one to be present in the 

final demonstrations.  

Scenario 1: Continuous end-to-end connectivity 

 

The configuration for the scenario is depicted in Figure 16: 
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Figure 16: Scenario 1 for IBR-DTN 

Two UMOBILE Ubuntu hosts (nodes 1 and 3) were set up to exchange messages, 

tunnelled via the Android IBR-DTN smartphone daemon (node 2). To this end, two 

sample NDN applications were used: ndnping and ndnpeek/ndnpoke. The Android phone 

served as WiFi hotspot, to which the laptops connected.  

Both applications worked as expected and the hosts successfully exchanged data packets, 

validating that DTN tunnelling functionality has been integrated into the UMOBILE 

platform under the presence of regular network conditions. 

Scenario 2: Intermittent connectivity 

The configuration for the scenario is depicted in Figure 17: 

 

 
Figure 17: Scenario 2 for IBR-DTN 

This time, 2 mobile hosts are present. Again, the ndnping and ndnpeek/ndnpoke 

applications were used and the Android smartphones were used as WiFi hotspots. As 

disruption-tolerant functionality was being assessed, Interest lifetime was set to a large 

value (60s) so that intermittent connectivity and large delays would not cause the 



 

46 

Interests to be dropped (default interest lifetime is 4s). Intermittent connectivity and 

large delays were simulated by switching off WiFi links. 

We note that we have set up static links so that Node 1 can only reach Node 3 via Node 2, 

and Node 3 can only reach Node 1 via Node 4. This was done in order to assess the 

enhanced functionality of a “DTN island”. When tunnelling over a “DTN Island”, the 

UMOBILE platform can use a different node to return the Data responding to an Interest, 

rather than the one that forwarded it. This way, an alternative is offered to the classic 

NDN breadcrumb routing approach and data availability is improved when the original 

node experiences disconnections. 

The second test consisted of 3 phases presented in Table 6: 

Table 6: Configuration of the different links 

 Link 1-2 Link 2-3 Link 3-4 Link 4-1 

Phase 1 Up Up Up Down 

Phase 2 Down Up Up Down 

Phase 3 Down Up Up Up 

 

The communication pattern is as follows:  

 Phase 1: At first, Node 1 (consumer) sends several Interests to Node 3 (producer), 

which are tunnelled via Node 2 running the IBR-DTN daemon. The producer then 

responds with the corresponding data packets are tunnelled via Node 4 while 

trying to reach Node 1. At this point, there is no connection between Node 4 and 

Node 1 so the data packets (encapsulated into Bundles) are stored by the IBR-DTN 

daemon in Node 4. 

 Phase 2: Link 1-2 becomes inactive, so Interests stop to be forwarded to the 

Producer. At this point, Node 1 has no connection to the rest of the network. The 

corresponding data packets continue to be stored by the IBR-DTN daemon in Node 

4, waiting for a connection to Node 1 to be delivered. 

 Phase 3: Link 4-1 becomes active. IBR-DTN in node 4 detects the change and 

forwards the corresponding data packets back to Node 1. 

Several iterations of the test were performed, with varying levels of network 

disconnections (from 5 to ~40 seconds). The flow of information above was validated at 

both the NDN producer/consumer terminals, as well as on the IBR-DTN mobile daemons. 

Network responses to altering the connectivity status were present, just as expected (e.g. 

continuous increase in data stored in the IBR daemon in Phase 1, no further increase in 

Phase 2, burst of returning Data packets in Phase 3). 
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Based on the experiments above, we can safely deduce that the IBR-DTN daemon has 

been successfully integrated into the UMOBILE platform. In both experiments, the module 

behaved as expected, while the second test solidified that IBR-DTN is now able to provide 

connectivity in the case of network disruptions to a pair of remote UMOBILE hosts. 

4.5.5 Use case mapping 

This demo maps to the emergency fire case in the first demonstrator. 

4.6 Service Migration 

4.6.1 Description 

A central objective of the UMOBILE project is to provide network connectivity in locations 

with limited connectivity or no connectivity at all. To address the challenge, we are 

developing a service migration platform that on the basis of information collected by 

monitors, can strategically deploy services to ameliorate the impact of network problems 

or ideally, to prevent the materialization of threats. As explained in deliverable D5.3 [1], 

to demonstrate that the service migration platform has a potential to solve the problem, 

we will use an emergency scenario as use case. The central idea is to use the service 

migration platform to deploy services to be used by emergency teams and victims in areas 

struck by undesirable events (fires, floods, earthquakes, etc.) where the network 

infrastructure is absent or disturbed by the event.  

 

 

Figure 18: View of UMOBILE deployment with focus on service migration 

 

Internet	

Router 

Hosting Server 

UAV 

 Gateway 

Service Manager 

R1 

R2 

R3 

R4 

HS1 

HS2 HS3 

HS4 
HS5 

D1 D2 D3 D4 Enduser Device 

X 

Service Producer 

sia, sib, sic, sid 

UMOBILE Domain 

M1 M2 

DE 



 

48 

In the following discussion we assume one of the emerging business models where the 

network operator is responsible for providing both network connectivity and access to 

content and services to their end-users. The network operator is not necessarily the 

owner of the services but it acts (on behalf of the actual owner of the services) as the 

party responsible for the availability of the services and their quality.  

Imagine for example, the components shown in Figure 18 (Service Producer, Service 

Manager, Routers, Gateway and Hosting Server) are instrumented with the service 

migration platform. Assume that the Service Producer is in possession of compressed 

images of several services (sia, sib, sic and sid) and that he has delegated to the network 

operator the responsibility of delivering them to the end-user upon requests. For 

example, sa is the service that can be enacted from its compressed image sia. Let us 

assume that sa is a service needed by a rescue team involved in the emergency scenario. 

The compressed image sia is accessible to the Service Manager from the Service Producer 

and might be stored locally (within the Service manager) as well.  

A central objective of the UMOBILE project is to provide network connectivity with 

different levels of QoS, ranging from best effort to more stringent levels. Of particular 

interest to UMOBILE is the provision of services in locations with limited network 

connectivity or no connectivity at all as illustrated by the network link between R4 and 

HS5. 

To address the challenge, we are developing a service migration platform that uses a 

decision engine (shown as DE in the figure) that on the basis of information collected by 

monitors can strategically deploy services to ameliorate the impact of network problems 

or ideally, to prevent the materialization of threats. Only two monitors (M1, M2) are 

shown in the figure yet there are no technical restrictions to deploy as many as necessary 

in strategic locations as they are software components (for example, Python scripts). 

4.6.2 Demo Key Features 

This demo has two objectives: 

 Objective 1 (O1): To measure and quantify the capability of service migration 
platform as well as identify the critical factors that impact the QoS as perceived by 
the end-users.  

  Objective 2 (O2): To validate the correctness of the functionality of the service 
migration platform as a whole and of their main components such as its decision 
engine and monitoring system.  

 
The methodology used is presented next: 
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 In pursuit of O1 we will conduct experiments to identify the performance metrics 
which impact the latency as perceived by the end-users.  

 In pursuit of O2 we will conduct experiments that produce outputs from the main 
components of the service migration platform. In this manner, we validate that the 
underlying mechanisms (for example, Push-based and Pull-based communication 
models) function correctly. 

4.6.3 Hardware and software requirements and experimental settings 

In this preliminary demonstration of our ideas, we will use a laboratory implementation 

of the UMOBILE platform discussed in the Introduction of this deliverable (see Figure 1). 

The rationality behind our choice is that our laboratory setting is a simplified version of 

the architecture of Figure 1, yet it includes and highlights all the components needed in 

our experiments and can be mapped onto the architecture of Figure 1.  The functionality 

and realization of the components used in our laboratory experiments is as follows (see 

Figure 18): 

 UMOBILE Domain: It is a set of nodes deployed with UMOBILE software so that 

they are able to take advantage of the NDN facilities. It includes network routers 

(for example, R3) and applications hosts (for example, HS2). All the components 

shown in the UMOBILE domain require the UMOBILE platform software to support 

applications such as these demonstration scenarios. However, the deployment of 

UMOBILE platform software in end-user’s devices is optional since these devices 

can use conventional IP interfaces to connect to the UMOBILE domain. The 

UMOBILE Domain is linked to the conventional Internet by a UMOBILE Gateway. 

 Gateway: It is responsible for connecting the UMOBILE Domain to the Global 

Internet. Its functionality is to convert NDN Interest Requests to HTTP requests 

and HTTP responses to NDN Response. In Figure 18 it is deployed in one of the 

NDN routers (R0). 

 UMOBILE Routers (R1, R2, R3, R4): It is a standard NDN router enhanced with 

features developed by the UMOBILE project. We assume that UMOBILE Routers 

are in possession of storage that they use for in-network caching and for storing 

application level information such as dockerized service images. In the laboratory 

setting, we use Raspberry Pi computers to implement the routers shown in Figure 

18. 

 Hotspots (HS1, HS2, HS3, HS4): It is a conventional computer with wireless 

communication facilities that can offer connectivity to End-user Devices (D1,…,D4). 

It has disk storage facilities and virtualization software. In our experiments we use 

Docker virtualization technology. Likewise, to implement the hotspots we use 

Raspberry Pi computers that are capable of executing Linux containers. 
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 End-users devices (D1, D2, D3, D4): It is a mobile device with wireless facilities 

and interested in accessing services provided by the ISP provider. We assume that 

mobile devices communicate with the UMOBILE Hotspots over conventional HTTP.  

 Service Provider: We assume the emerging business model where network 

providers are responsible for providing both network connectivity and access to 

services to end-users. In Figure 18, we assume that the service provider is the 

owner and in full control of the resources included in the UMOBILE Domain. 

Consequently, the Service Producer has delegated to the Service Provider the 

responsibility of deploying their services. 

 Service Producer: It is an entity in possession of some arbitrary services of 

interest to the end-users. He stores them as compressed dockerized images sia, sib, 

sic and sid which are at the disposition of the Service Provider. 

 Services images (sia, sib, sic, sid): It is a compressed dockerized images stored 

within the Service Producer.  

 Services (sa, sb, sc, sd): It is an application of interest to the end-user that can be 

instantiated from a corresponding compressed dockerized image. We assume that 

the services demand different levels of QoS, for instance different latencies. For 

example, service sa is latency-sensitive whereas sd is latency-tolerant. 

 Service Manager: It is a piece of software that implements all the functionality 

that the Service Provider needs to deploy his services, including disk space to store 

both services and compressed images. In Figure 18, the Service Manager is 

strategically deployed on a computer directly connected to the Gateway. This 

deployment simplifies the task of transferring compressed service images from the 

global Internet to the UMOBILE Domain. At the heart of the Service Manager you 

can find a decision engine responsible for the actual deployment of services.  

 Decision Engine (DE): It is a piece of software with all the necessary logics to 

make decisions about service deployment and migration. The decision engine has 

access to monitors deployed strategically within the UMOBILE Domain and 

instrumented to collect metrics about conditions of interest. On this basis it makes 

decision about which services to deploy, when and where. For example, it creates a 

second replica of a given service in a neighbour Hotspot when the monitoring 

reports that the first replica is overloaded.  

 Monitors (M1, M2): It is a software tool for collecting real time information about 

the status of the resources included in the UMOBILE Domain, such as network 

conditions and current usage of their Hotspot resources (CPU, memory and disk). 

Only two monitors are shown in Figure 18. A good example of a monitor is a 
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Python script deployed in the Raspberry Pi used to implement a Hotspot to 

measure and report its current free memory. 

4.6.4 Validation of the service migration platform 

Identification of the resource consumptions that impact QoS 

These experiments are aimed at the fulfilment of objective 1, thus they demonstrate the 

proper functionality of the service migration platform and of its main components. 

Namely, we will validate the following components: 

 The monitors (see M1 and M2 in Figure 18) used by the decision engine. The focus 

of this validation is on the correctness of the Pull-based model used by the 

monitors in metric collection. 

 The actual deployment of the service over the NDN-based UMOBILE Domain. The 

focus here is on the validation of the Push-based model. Such a model is central 

since the service platform uses it to move a service image from its original location 

(for example, the Service Manager) to the selected Hotspot. 

Regarding monitoring, we report the results of some experiments that measure current 

CPU load, memory usage and latency exhibited by a service deployed on a Raspberry Pi 

computer exposed to different work loads including exhaustion points. 

Validate the scalability of number of Docker containers running on the UMOBILE 

hotspot (i.e., Raspberry Pi).  

In this validation, we aim at finding the maximum number of containers running in 

parallel on a single Raspberry Pi. To scale up the containers, we consider that the Docker 

image could be prepared as small as possible to minimize memory footprint. 

Consequently, the memory allocation for kernel to handle a web server process can be 

optimized. For this, we use a nano web server image developed in assembly code in which 

size is less than 90 KB. We base our evaluation on memory consumption, CPU utilization 

and the creation time (time taken to create a container) by using sysstat. 

The results for our optimized Docker are depicted in Figure 19-Figure 22 where we were 

able to scale up the number deployed containers to 2408. Specifically, memory usage is a 

key factor that limits the capability of running the containers on a PI. As shown in Figure 

19, the memory usage increases gradually when a container is added. The initial memory 

usage before creating the first container was about 98 KB (9.89%). We hit the limit of 

2408 containers where there is no space for available memory.  
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Figure 19: Measuring memory usage while scaling up the number of containers 

 
Figure 20: Measuring average CPU usage while scaling up the number of containers 

Figure 20 shows the average utilization of the quad-core CPU of the Pi. Over the first 

thousand of deployed containers, the average CPU usage is very low (about 0.2%) with a 

few spikes. However as expected, the CPU usage increases significantly in the high load 

state (when the number of containers is larger than 2000). The Raspberry Pi consumes 

about 30% of CPU resources. The available space can be around 70% which is sufficient to 

provide multiple services. 
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Figure 21 depicts the results of creation time where each point denotes the time it took 

for the n-th container to start up. The creation time is varied from 0.62 s to 38.37 s 

depending on the current CPU load and memory usage. In addition, we also plot the 

cumulative creation time of the 2408 containers (Figure 22). The Pi spent approximately 

1 hour and 50 minutes to spin out 2408 containers. On average each container requires 

2.79 s to start up a web server.  

 
Figure 21: Measuring the creation time while scaling up the number of containers  

 
Figure 22: CDF of creation time while scaling up the number of containers 
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Validate the latency of web accessing with exhaustive resources  

In order to investigate the feasibility of using lightweight containers as a base technology 

for the service migration, we aim to evaluate the scalability of each containers running on 

a single Raspberry PI while serving a large number of requests. The goal is to bring the 

CPU to its exhaustion point where its response to requests is of the order of hundreds of 

milliseconds or even seconds. We deploy a minimal static web server using httpd Docker 

base image using a similar configuration as the experiments in the previous section. The 

benchmarking scenario represents the UMOBILE operation where users can access the 

services provided by the UMOBILE hotspots through a wireless interface. Using the Ab - 

Apache HTTP server benchmarking tool3, we conduct stress tests on the UMOBILE 

hotspot while scaling the number of concurrent users from 10 to 250. The total number of 

requests was set as 10000 transactions per experiment. For instance, in case of 10 users, 

1000 requests were sent by each user.  

Figure 23 illustrates the CDF of response time from the web container running on the Pi 

while varying the number of simultaneous users accessing the service. As shown in Figure 

23, a single deployed Docker container is capable of serving a large number of concurrent 

users. As expected, the average response time increases when the number of con- current 

users is scaled up. Figure 24 and Figure 25 plot the CPU utilization and CPU load of the Pi 

using sysstat tools. The CPU utilization increases almost 20% when the number of users 

increases from 10 to 250. This increases the response time for the processes. Even though 

the utilization has not reached the capacity of CPU, processes still run slower as the CPU 

load increases. Figure 25 shows the average CPU load of the Pi (sampled in one min 

intervals). As the arrival rate of user requests increases, the amount of computational 

work need to process also increases. This has impact on the response of time (Figure 23).  

                                                 
3
 https://httpd.apache.org/docs/current/programs/ab.html  
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Figure 23: CDF response time with multiple users requests 

 

 
Figure 24: Average CPU usage with multiple users’ requests 
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Figure 25: Average CPU load with multiple users’ requests 

 

Validating the monitoring system with pull communication  

Now, we deploy monitors (Python or shell scripts) in strategic locations to collect metrics 

about the current status of the Hotspots and their network links and report their 

observances to the decision engine. The goal of this validation mainly presents the ability 

to retrieve information from each particular hotspot in UMOBILE network. In our 

scenario, the monitoring engine (collocated with service manager) sends an Interest 

packet with a compound name that contains two parts. The first part (prefix) is the named 

entity. In our case, it is /umobile/service_monitoring/. The second part has the reserved 

name component ID which /hs1. Such that the full name for the monitoring Interest in our 

case is /umobile/service_monitoring/hs1. 

Next we show an Interest message sent from the monitoring engine.  

 

 

 

Following we show a log screen of hs1 when it replied monitoring Interest with 

monitoring Data. 

 

 

 

 

 

 

 

Sending Interest message: /umobile/service_monitoring/hs1 
Sent Interest for umobile/service_monitoring/hs1 

 

Node-name: hs1 

Registering prefix : /umobile/service_monitoring/hs1 

Receive Interest message name: /umobile/service_monitoring/hs1 

Number of user = 1 

Replied DATA to: /umobile/service_monitoring/hs1 
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Finally, we present a log screen of monitoring engine when it received the monitoring Data 

from hs1. 

 

 

 

 

 

 

 

The actual deployment of the service over the NDN-based UMOBILE Domain 

The focus here is the validation of the Push-based model. Such model is central since the 

service platform uses it to move a service image from its original location (for example, 

the Service Manager) to the selected Hotspot. After receiving the monitoring Data, the 

decision engine, located inside manager, will decide to migrate the service to the AP with 

the lowest CPU load and memory usage. The service manager will apply Push-Publish 

data dissemination model (details in D3.1) to migrate the service to the selected hotspot.  

Next we present the push message sent from service manager to the UMOBILE hotspot 1, 

i.e., a log screen of monitoring engine when it received the monitoring Data from hs1. 

 

 

 

The first part (prefix) is the named entity. In this case, it is 

/umobile/service_migration/push. The second part has the name of selected UMOBILE 

hotspot with the service name which is /SEG_1/rpi-nano-httpd.tar. 

 

Following we show the log screen of the UMOBILE hotspot (SEG_1) receiving the push 

Interest message from the service manager. Consequently, the UMOBILE hotspot (SEG_1) 

sends subsequent Interest message with the service name mentioned in the previous 

push Interest message.  

 

 

With the benefit of ICN, the UMOBILE hotspot will be able to fetch the service from any 

node that has the matching service in the cache. For simplicity, this validation performs 

the experiment with only two nodes that are the UMOBILE hotspot and Service manager. 

Therefore, the Interest message requesting the service is directly delivered to the service 

manager as presented in the log screen shown below. Consequently, the service manager 

Receive monitoring data 

Receive Data from SEG_1 

data payload: 15.0/0.03 

 

{'loadAvg': '0.03\n', 'memUsage': '15.0'} 

Memory Usage: 15.0 

Load Average: 0.03 

 

Sent Push Interest for /umobile/service_migration/push/SEG_1/rpi-nano-

httpd.tar 

 

Receive Interest message name: /umobile/service_migration/push/SEG_1/rpi-nano-httpd.tar 

Sending Interest message: /sm/service_migration/rpi-nano-httpd.tar 
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replies to the UMOBILE hotspot with the Data message containing the first chunk of data 

(e.g., /rpi-nano-httpd.tar/%00%00). The UMOBILE hotspot automatically increases the 

data chunk id and sends the Interest message back to the service manager. Once the 

UMOBILE hotspot receives the first data chunk, it automatically increases the chunk id 

and sends back to the service manager. As shown in the log screen below, the service 

manager sends the second chunk of data (e.g., /rpi-nano-httpd.tar/%00%01) after 

receiving Interest message with increment chunk ID.  

Following we present the log screen of service manager when it receives the Interest 

message requesting the service: 

 

4.6.5 Use case mapping 

Emergency scenario and civil protection 

4.7 Smart routing and forwarding improved by the use of PerSense Mobile 

Light Information 

4.7.1 Description 

Current opportunistic networking algorithms are based on the frequency of encounters 

and the duration of encounters. It is our understanding that the usage of context 

information about users’ roaming routines and users’ behaviour such as visited networks, 

as well as affinity networks will improve the direct communication among devices, as well 

as the potential usage of open WiFi hotspots. 

The demo will show how using data captured via PerSense Mobile Light and capturing its 

tracking information can evolve and complement smart routing in NDN-based 

opportunistic networking environments, namely environments supported by NDN-Opp. 

In particular, we will focus on the social routine scenario and we will define two 

showcases: a) one where messages are routed and forwarded towards a specific 

destination node. In this showcase, we’ll make use of the Oi! application that runs on top 

of NDN-Opp; b) A second showcase will be defined where users can gather access to data 

by posting they interests. Posting of interests and data transmission will be handled by 

NDN-Opp in an opportunistic networking setting. This means that data will be forwarded 

Receive Interest message: /umobile/service_migration/rpi-nano-httpd.tar , sending back DATA message 

/pi/SM_NDN/SC_repository/rpi-nano-httpd.tar 

 

Replied to Interest name: /umobile/service_migration/rpi-nano-httpd.tar/%00%00 

Replied w ith Data name: /umobile/service_migration/rpi-nano-httpd.tar/%00%00 

 

Receive Interest message: /umobile/service_migration/rpi-nano-httpd.tar/%00%01, sending back DATA message 

/Users/adisorn/PycharmProjects/SM_NDN/SC_repository/rpi-nano-httpd.tar 

Replied to Interest name: /sm/service_migration/rpi-nano-httpd.tar/%00%01 
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to interested devices by exploiting direct communication about them. In any of these two 

showcases, data exchange will be done by making use of hybrid routing metrics computed 

based on the contextual information gathered by PerSense Mobile Light tool. Data shall be 

transmitted via opportunistic communication provided by NDN-Opp, but based on a more 

complete set of users’ context information provided by PerSense Mobile Light. 

4.7.2 Demo Key Features 

The above mentioned showcases will be developed based on a set of end-user devices 

implementing NDN-Opp (being developed by COPELABS): NDN-Opp will be able to run a 

smart routing algorithm to decide about the best neighbours to carry data that is intended 

to a specific node or to a set of nodes. Such smart routing will rely on metrics that are 

computed based on indicators provided by the UMOBILE contextual manager, which 

includes the PerSense Mobile Light module developed by Senception. Tecnalia will work 

on the definition of a hybrid mechanism that shall take into consideration the data 

captured by PerSense Mobile Light, and that shall apply it into alternative social-aware 

routing, thus allowing data to be transmitted via other than shortest path routing (e.g. by 

considering the wireless roaming context of individual users and providing matches that 

can assist in a “better” choice of successors), and in a way more suitable to the 

environments served by UMOBILE, e.g. support for intermittent Internet access. This 

aspect shall be worked jointly with COPELABS (social-aware routing), who shall also 

assist the integration of opportunistic communication via the NDN-Opp framework, based 

on WiFi and WiFi Direct, into NFD.  

4.7.3 Hardware and Software Requirements & Experimental Settings 

 Hardware and software requirements:  

o Hardware 

 4 Samsung S5 NEO Android Smartphones 

 1 NDN router installed at COPELABS, and that provides access to the 

NDN global testbed. 

 2 Access points (to allow end-user devices to connect to the NDN 

test-bed in two different physical locations) 

o Software 

 Android 5.1 (min 4.2, max: 6?) 

 NFD for Android  

 NDN-Opp (based on NFD for Android) allowing devices to exploit 

direct wireless communications to exchange data. 

 Contextual Manager and PerSense Mobile Light 

 Oi! and Now@ applications (which run on top of NDN-Opp) 

 Experimental Settings 
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o Creation of different settings (at least involving 20 smartphones and 3 

different clusters) 

4.7.4 Validation & KPIs 

The validation will be performed using a series of tests emulating a real environment. 

Simulation tools will be as complimentary mean to the real environment tests, especially 

to validate the smart routing solution. There are two options being considered. The first 

one is the use the opportunistic networks simulator ONE. The second option is to build 

our own simulator better adapted for our particular purpose, in order to research and 

validate new smart routing parameters apart from the duration, parameter that was 

already identified. 

The performance of the UMOBILE routing functionality will be mainly validated based on 

a real test-bed encompassing a set of personal mobile devices (smartphones), which will, 

in a first set of tests, communicate directly in a local network, by exploiting only existing 

WiFi direct connections.  

In a second validation set, the same set of smartphones, deployed in a local wireless 

network (e.g. COPELABS facilities) will be able to exchange data, not only with local 

devises, as in the initial validation set, but also with remote personal mobile devices, 

located in another facility (e.g. UMOBILE testbed). The communication between 

COPELABS facilities and the UMOBILE testbed may be supported by the NDN global 

testbed (https://named-data.net/ndn-testbed). 

The key performance indicators used in these two validations set are related to:  

 Compatibility with the NDN framework. In this case we aim to analyse how can 

devices implementing NDN-Opp communicate with devices implementing the 

regular NDN framework. In this case the indictors are related to the rate of 

successful transmissions.  

 Performance with NDN-Opp in a fully opportunistic scenario. In this case we 

aim to analyse the performance of the supported routing solutions while exploiting 

existing WiFi direct transmissions in terms of the percentage of delivered messages, 

the cost of communications in terms of the ration between delivered and 

replicated messages, and the delay of communications. 

 Performance of NDN-Opp in a hybrid networking scenario. In this case we aim 

to analyse the performance of NDN-Opp in scenarios where devices can 

communicate directly, via existing WiFi direct connections, as well as indirectly, 

via an existing WiFi infrastructure. We will use the two KPIs described above. 

 Analysis of the best solution to support push communication models in an 

opportunistic scenario. In this case we aim to analyse different solution in terms 

https://named-data.net/ndn-testbed
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of its scalability (e.g. size of the PIT table) and delay (e.g. number of used messages, 

for instance in the case of three hand-shake approaches). The scalability will be 

measured in terms of memory needed for smart routing when the networks grows 

in number of nodes as well as in time needed for processing of all the information 

in order to decide whether to forward the packets or not. 

 Performance of Now@ application in terms of its capability to keep data 

synchronized among devices sharing the same interests. In this case the key 

performance indicators will be the number of messages exchanged to keep data 

synchronized and the delay in synchronizing data among the set of devices that 

showed interested in that data. 

While the Now@ application has a clear set of performance indicators, the same those not 

happen with the Oi! application. In the latter case, since Oi! is an instant message 

application, its operation rely fully on the performance of NDN-Opp in terms of the 

message delivery success rate and message delay. 

While the previous evaluation sets aim to validate the UMOBILE routing functionality 

provided by NDN-Opp based on the contextual information provided by the PerSense 

Mobile Light, a further validation set may be used to evaluate the performance of the 

proposed routing mechanism. In this case the validation may be performed using a series 

of tests emulating a real environment. Simulation tools will be used as complimentary 

mean to the real environment tests, especially to validate the smart routing solution. 

There are two options being considered. The first one is the use the opportunistic 

networks simulator One. The second option is to build our own simulator better adapted 

for our particular purpose, in order to research and validate new smart routing 

parameters apart from the duration, parameter that was already identified. 

4.7.5 Use case mapping 

The validation of the UMOBILE end-user device developed based on NDN-Opp and the 

Contextual Manager (including the PerSense Mobile Light) will be done based on the 

Social Routine Improvement Scenario, corresponding to the second proof-of-concept 

presented in deliverable 5.3 [1]. 
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5. Conclusions 

The main objectives of this deliverable are to provide the validation setup for the system 

and its individual components and to describe the evaluation of the platform through 

simulations. 

For that purpose, first we have presented the functional blocks of the UMOBILE platform 

and each of the network and end-user devices that are part of the platform. Based on 

these two types of devices we have provided a detailed description of each of them 

explaining also a full image of the whole UMOBILE platform. 

Secondly, in Section 3 we have explained the simulation methodology and the tools that 

are being used to evaluate the different parts of the solution through simulation. We are 

working on simulation right now and results will be provided in the next version of this 

deliverable, D5.2. 

Finally, in Section 4 we have assessed the validation of UMOBILE platform by explaining 

the validation methodology of each of the UMOBILE components individually. Besides, we 

have mapped each of the components with one of the use cases defined previously in the 

project. Therefore, we link each of the components with its real application. Further 

results of these validations will be provided in the next version of this deliverable, D5.2. 

This deliverable is a first version that provides a guideline and a methodology for both the 

validation and the simulation. Both of them are a work in progress right now and they are 

being executed following what has been defined in this deliverable. D5.2, planned for 

M36, will contain the conclusions of this validation and simulation works.  
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