

UMOBILE ACM ICN 2017 Tutorial Opportunistic wireless aspects in NDN

ACM ICN 2017 Berlin 26.09.2017

Paulo Mendes, COPELABS / University Lusofona (paulo.mendes@ulusofona.pt) Omar Aponte, COPELABS / University Lusofona (omar.aponte@ulusofona.pt)

Session Overview

1. Opportunistic Networking in UMOBILE

- Wireless NDN: current picture
- Extension of NDN Android to Opportunistic Networks (NDN-OPP)

2. Handling Data: Opportunistic Forwarding

- Exploiting any communication opportunity
- Social-aware opportunistic networking algorithm
- 3. Handling Interests: Dissemination of Name Prefix Reachability
 - Multi-path routing
 - Adaptive forwarding
- 4. NDN-OPP presentation
 - Experimental setup
 - Demo

1. Opportunistic Networking in UMOBILE

UMOBILE Wireless NDN: Current Picture

NDN for wireless networks

- Focused on MANET, where machines are not constrained devices.
- Focused on wireless sensor networks and sink-centric data traffic.
- HOWEVER, assumes communication paths between any pair of nodes at any moment in time.

NDN operation in opportunistic wireless networks

- No prior effort.
- Opportunistic wireless networks:
 - Do not assume communication paths between any pair of nodes at any moment in time.
 - Exploit any communication opportunity to forward data towards receivers.

Motivation:

- Driven by devices coming within transmission range: e.g. Wi-Fi direct and Bluetooth.
- Handle intermittent transmission opportunities: interface with queuing system.
- Novel approach to forwarding and routing.

NDN for Opportunistic Networks

Handling Interests and Data Transmissions

Handling Data

- Hypothesis A: Breadcrumb approach as in NDN
 - May lead to network flooding in opportunistic networks.
- Hypothesis B: Opportunistic Forwarding
 - Selective forwarding strategy based on probability of neighbor to meet node interested in name prefix.
 - Requires:
 - Computation of social weights for each potential destination (interested node) of a name prefix.
 - Forward data if neighbor has higher probability to deliver to the data packet of a certain name prefix.

Handling Interests

- Hypothesis A: Carrier
 - May lead to high latency.

Hypothesis B: Dissemination of Name Prefix Reachability

- Assumption: Data sources are subjected to lower intermittent connectivity with high probability.
- Study: Multi-path routing combined with adaptive forwarding.

Hypothesis C: Opportunistic Forwarding

- Assumption: Data sources maybe subjected to high intermittent connectivity with high probability.
- Study: Opportunistic forwarding strategy similar to the one used to handle data packets.

NDN-OPP High-Level Specification

7

ATTENAN LUCI WUNIVERSITY OF CAMBRIDGE COPEADS LECCADIO Inspiring Business OF AFA

2. Handling Data: Opportunistic Forwarding

NDN-OPP Selective Data Forwarding Strategy

- Selective forwarding strategy based on probability of meetings nodes interested in some name prefixes.
 - Basic algorithm:
 - Node NX forwards data to a node NY
 - If Social Weight (SW) of NY towards the name prefix > SW of NX, in the current daily sample.
 - If NY has no SW towards the name prefix, NY may still get the data packet:
 - If and only if importance of NY > important of NX, in the current daily sample.
- Social weights:
 - Depends upon name prefix:
 - Oi! name prefix (/app/Oi!/*/Nb): SW = probability of meeting Nb
 - Now@ name prefix (/app/Now@/topic): SW = probability of meeting nodes interested on Topic.
 - Provided by:
 - Contextual Manager: SW of current node.
 - From PIT: SW of neighbor nodes.
- Social-aware forwarding algorithm imported from Opportunistic Networking literature:
 - Waldir Moreira, Paulo Mendes, Susana Sargento, "Opportunistic Routing based on daily routines", in Proc. of IEEE WoWMoM workshop on autonomic and opportunistic communications, San Francisco, USA, June, 2012.
 - Waldir Moreira, Paulo Mendes, Susana Sargento, "Social-aware Opportunistic Routing Protocol based on User's Interactions and Interests", in Proc. of AdhocNets, Barcelona, Spain, October 2013.

9

3. Handling Interests: Dissemination of Name Prefix Reachability

NDN-OPP Multi-path Routing with Adaptive Forwarding

Major Assumptions

- Data sources are subjected to lower intermittent connectivity with high probability.
- Any device that stores a data copy can announce its name prefix (long match).
- Link State Announcements (LSA) are exchanged based on Interest / Data messages.
- Packets are digitally signed based on an hierarchy reflecting the structure of the opportunistic networking domain.

Major Requirements

- Does not build network topology, due to the dynamic nature of the opportunistic network.
 - Does not need to run Dijkstra to produce multiple next-hops for each destination node (name prefix source).
 - Multi next-hops for each name prefix are produced based on local information that encodes data reachability.
- Avoid sending periodic Hello messages among intermittent connected neighbor nodes.
 - Failure and recovery detection based on management of Opportunistic Faces.
- Selective dissemination of LSA due to the dynamic affinity network of each node.
 - LSA are exchanged between (N-x) number of neighbours

13

List of next hops towards a name-prefix based on data reachability cost:

- Metric dV: data validity set up by the data owner.
- Metric LC: link cost based on the average wireless contact duration via interface I.
- Rationale: Select interfaces with high probability to lead to at least one copy of data.

LSA (/x/y1) in a node Nx:

- Local copy: $LSA = f (dV_{Nx} (/x/y1))$
- Otherwise: $LSA = f (LC_{NB}, LSA_{NB} (/x/y1))$, LC is a Link cost toward its neighbor

Dissemination of LSA (/x/y1) by N3:

- N4 recomputes LSA_{N3} based on LC_{N3}
- N4 accepts LSA_{N3} (/x/y1) if LSA_{N3} avrLocalLSA (/x/y1) > X to insure multi-path diversity
 - Increases the probability of delivering Interest packets.

NDN-OPP

Adaptive Forwarding based on Interface Ranking

- Interface ranking based on metrics A, U and D:
 - A: neighbor degree centrality (Collected from Contextual Manager)
 - U: neighbor availability (Collected from Contextual Manager)
 - D: time lapse between forwarding Interest and getting date indication of distance from nearest data copy
 - Rationale: Uses the interface that provides higher deliver probability or low delay (study item)

Forwarding based on a set of interfaces I

- For each name prefix in the RIB a node:
 - Ranks the interfaces based on A, U and D
 - Forwards interest packets through the highest rank interfaces
- Ranking of Interfaces is updated based on:
 - New A and U provided by contextual manager
 - New D computed based on time lapse between Interest and Data.

Rank_I (/x/y1) in a node Nx:

- Increases with A and U
- Decreases with D

ATHENA

- D may have higher importance than A and U because:
 - A and U provide an indication of potential transmission success
 - D reflects transmission quality

NDN-OPP Routing NSLR as Starting Point?

NLSR Used Functionalities:

- Hierarchical naming scheme.
- LSDB synchronization on top of Interest/Data packets.
- NDN embedded security.

NLSR Functionalities not Used:

- LSA for adjacency (just LS Link state).
- Multipath computation based on Dijkstra's algorithm.
- Hello protocol for neighbor failure and recovery detection.

What do we do different

to adapt NDN to Opportunistic networks?

- Dissemination of LSAs of name prefixes.
- No dissemination of LSAs Adjacency.
- Selective dissemination.
- Any device that stores a data copy can announce its name prefix (long match).
- Link/Interface management based on Opportunistic Faces.
- LSA for name prefixes are deleted when dV expires.

Named-data Link State Routing (NLSR)

- Reuse a mature routing algorithm: link state
- NDN native
 - Names, not addresses (networks, routers, processes, data, keys)
 - Interest/Data are used to distribute routing info.
- Multipath support: modified Dijkstra's algorithm to produce a ranked list of next-hops for each name prefix.
- Security
 - a trust model for intra-domain routing
 - Routing data is signed by originating router and verified by receivers based on trust model.

* AKM M. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang. *NLSR: Named-data link state routing protocol*. In ACM SIGCOMM ICN Workshop, 2013. 11/14/13

4. NDN-OPP Demo

NDN-OPP on GitHub: http://github.com/COPELABS-SITI/ndn-opp

This project has received funding from

the European Union's Horizon 2020 research and innovation programme

under grant agreement No 645124

