

1

Action full title:

Universal, mobile-centric and opportunistic

communications architecture

Action acronym:

UMOBILE

Deliverable:

D5.3 ȰProof of Concept (1)ȱ

Project Information:

Project Full Title Universal, mobile-centric and opportunistic communications architecture

Project Acronym UMOBILE

Grant agreement number 645124

Call identifier H2020-ICT-2014-1

Topic ICT-05-2014 Smart Networks and novel Internet Architectures

Programme EU Framework Programme for Research and Innovation HORIZON 2020

Project Coordinator Prof. Vassilis Tsaoussidis, Athena Research Center

2

Deliverable Information:

This deliverable provides the description of the integration of the UMOBILE system as well

as the details of the two demos that integrate the proof-of-concept. The proof-of-concept is

initially described in this deliverable; then, in M34, the full aspects concerning the proof-

of-concept and software availability will be described and reported in D5.4 ȰProof-of-

Concept (2)ȱȢ

Deliverable Number-Title D5.3 Proof of Concept (1)

WP Number WP5

WP Leader FON

Task Leader (s) AFA Systems

Authors

COPELABS: Paulo Mendes, Seweryn Dynerowicz, Omar Aponte

ATHENA: Sotiris Diamantopoulos, Alex Sarros

UCL: Sergi Rene, Ioannis Psaras

UCAM: Adisorn Lertsinsrubtavee, Carlos Molina Jimenez

SENCEPTION: Rute Sofia

TECNALIA: Iñigo Sedano Perez

AFA: Angela 5Ω!ƴƎŜƭƻ, Gianmichele Russi, Francesco Amorosa

FON: Alberto Pineda, Pablo Salvador

Contact dangelo@afasystems.it

Due date M24: 31/01/2017

Actual date of submission M24: 31/01/2017

Dissemination Level:

PU Public x

CO Confidential, only for members of the consortium (including the Commission Services)

CI Classified, as referred to in Commission Decision 2001/844/EC

Document History:

Version Date Description

3

Version 0.1 5/11/16 Initial template with Table of Contents

Version 0.2 16/12/16 Revised table of contents

Version 1.0 13/01/17 Revised first version based on feedbacks

Version 2.0 23/01/17 Updated version after plenary meeting

Version 2.1 27/01/17 Added some sections

Version 2.2 30/01/17 Finalized preliminary version of the deliverable, circulated for internal review

Version 2.3 31/01/17 Final version

Version 2.4 04/04/17
Revised version based on comments provided by the reviewers during the

interim review

4

Table of Contents

Table of Contents ... 4

Executive Summary .. 6

1. Introduction .. 7

2. UMOBILE System Integration .. 8

2.1. UMOBILE Gateway ... 10

2.2. Service manager .. 11

2.2.1. Network architecture integration of service migration, DTN and KEBAPP 11

2.2.2. Integration of service migration with DTN .. 14

2.2.2.1. Service deployment request ... 15

2.2.2.2. Service migration facilities ... 16

2.2.3. Integration of service migration with KEBAPP ... 17

2.2.3.1. Service migration facilities ... 19

2.2.3.2. Service deployment technology ... 19

2.3. UMOBILE Hotspot ... 21

2.4. UMOBILE End User Services .. 22

2.4.1. Operation flow chart ... 24

3. UMOBILE Lab .. 27

3.1. Description .. 27

3.2. Devices .. 32

4. Proof of Concept .. 36

4.1. Overview ... 36

4.1.1. Schema ... 36

4.2. POC 1: Emergency and Civil scenario .. 37

4.2.1. Context ... 37

4.2.2. Demonstrator .. 38

4.2.2.1. Scenario .. 38

4.2.2.2. Functional flowchart .. 39

4.2.3. Testbed ... 40

4.2.4. Validation ... 41

4.3. PoC 2: Service Announcement and Social-Routine scenario 42

4.3.1. Context ... 42

4.3.2. Demonstrator .. 42

4.3.2.1. Scenario .. 42

4.3.2.2. Functional flowchart .. 43

4.3.3. Testbed ... 45

4.3.4. Validation ... 45

5. Conclusions .. 46

6. References .. 47

5

List of figures

Figure 1. Overview of the UMOBILE platform .. 8

Figure 2. Functional blocks of the UMOBILE platform .. 10

Figure 4. A view of UMOBILE service integration (with focus on service migration) 12

Figure 5. A view of UMOBILE deployment with focus on service migration 15

Figure 6. Integration of service migration and KEBAPP ... 19

Figure 7. Flow chart of service migration with KEBAPP application 21

Figure 8. UMOBILE hotspot ... 22

Figure 9. UMOBILE End-user device ... 24

Figure 10. Router in a UMOBILE End-user device ... 25

Figure 11. OppFace of NDN-Opp .. 26

Figure 12. UMOBILE testbed: simplified architecture .. 28

Figure 13. UMOBILE testbed: more realistic architecture .. 28

Figure 14. UMOBILE Lab - Detailed architecture .. 31

Figure 15. UMOBILE testbed - physical installation .. 32

Figure 16. Proof of Concept schema .. 36

Figure 17. Emergency scenario & emergency message dissemination 37

Figure 18. High-level flowchart of the first Proof of concept .. 38

Figure 19. Functional flowchart POC1 .. 39

Figure 20. UMOBILE Lab configuration POC1 .. 41

Figure 21. Service Announcement and Social-Routine scenario ... 42

Figure 22. High-level flowchart of the second Proof of concept ... 43

Figure 23. Functional flowchart POC2 .. 44

Figure 24. UMOBILE Lab configuration POC2 .. 45

Figure 25. UMOBILE testbed - Captive portal .. 51

List of tables

Table 1. Lab components overview ... 32

Table 2. Lab components specifications .. 35

Table 3. UMOBILE Lab devices ... 50

file:///C:/Users/Angi/Desktop/UMOBILE_D5.3_v.2.5.docx%23_Toc478997053
file:///C:/Users/Angi/Desktop/UMOBILE_D5.3_v.2.5.docx%23_Toc478997054

6

Executive Summary

Background

Work Package 5 ȰOverall platform integration and validation ȱ of UMOBILE project aims

at the evaluation of the solutions developed in the project. A proof -of-concept is expected

as an outcome of WP5. Task 5.3 ȰProof-of-Conceptȱ concerns, indeed, the integration of the

architecture and services, derived from results developed in WP3 and WP4, with different

components, such as mobile nodes, sensor nodes, backhaul links of different type, Wi-Fi

infrastructure/equipment etc.

This Report is written in the framework of Task 5.3 Ȱ0ÒÏÏÆ of #ÏÎÃÅÐÔȱȢ

Objectives

The goal of this document is to provide a description of the integration of UMOBILE

system. The UMOBILE devices are defined; the interaction between software modules is

described and will be then evaluated through the proof-of-concept software (please refer

to D.5.1 ȰValidation methodology and evaluation reportȱ for the devices evaluation).

The proof -of-concept is created on two specific demos: two independent technological

demonstrations based on software developed during UMOBILE. The demonstrations rely

on two of the use-cases selected in WP2. The proof-of-concept is initially described in this

deliverable; then, in M34, the full aspects concerning the proof-of-concept and software

availability will be described and reported in D5.4 ȰProof-of-Concept (2)ȱȢ

7

1. Introduction

UMOBILE project goal is to develop a mobile-centric service oriented architecture that

efficiently delivers content to the end-users, by decoupling services from their origin

locations and shifting the host-centric paradigm to a new paradigm that incorporates

aspects from both information -centric and opportunistic networking. To achieve this,

UMOBILE architecture combines two emerging architecture and connectivity approaches,

Information Centric Networking (ICN) and Delay Tolerant Networking (DTN), into one

single abstraction.

UMOBILE needs to support various challenged scenarios, such as aftermath of disasters or

networks with limited backhaul capacity, that pose several challenges such as increased

latency, intermittent connectivity, etc. To address these challenges, UMOBILE architecture

includes a resilient service migration module, which utilizes advances in lightweight

operating systems to push service instances right to the network edge.

Having already described in detail the envisioned UMOBILE services in D3.3 and the

architecture design in D3.1, in this deliverable we focus on the description of the UMOBILE

system components from a functional point of view and, mostly, on the integration among

the components. While D5.1 provides the evaluation of the single components, the present

document focuses on the evaluation of the whole system through the definition of the

proof-of-concept.

The proof-of-concept is created based on two independent demonstrations, which rely on

two of the use-cases selected in WP2. The proof-of-concept is initially described in this

deliverable; then, in D5.4, the full aspects concerning the proof-of-concept and software

availability will be described.

In addition to the aforementioned, the present deliverable includes also a short guideline

to the usage of the UMOBILE Lab, which will be used as testbed for the proof-of-concept, as

well as details on the implementation of the Lab (attached to D5.3 as Annex A).

This document is organized as follows.

¶ Section 2 provides the description of the integration of UMOBILE system. The

UMOBILE devices are defined and the interaction between software modules is

described.

¶ Section 3 describes the UMOBILE Lab, the testbed that will be used for the proofs

of concept described in Section 4.

¶ Two different proofs of concept, corresponding to two of the use-cases selected in

WP2, are reported and analyzed in Section 4.

¶ Finally, in Section 5 we draw the conclusions.

8

2. UMOBILE System Integration

Figure 1 (extracted from D3.3) shows the high-level design of the UMOBILE architecture

divided into two distinct domains: the UMOBILE domain and the Internet domain .

Figure 1. Overview of the UMOBILE platform

The actors involved in the UMOBILE architecture, as already shown in previous

deliverables, include:

¶ UMOBILE-enabled end-user devices (i.e., smartphone, tablet), used to send and

receive participatory data (e.g., photos, short messages) as well as opportunistic

data (e.g., atmospheric pressure, temperature, noise, roaming patterns).

¶ UMOBILE-enabled hotspots are able to collect and relay relevant information (e.g.,

alert messages, instructions from emergency authorities), host some instantiated

services or store collected data, check its validity and perform computational

functions (e.g. data fusion) to increase the value of the information to the civil

authorities.

9

¶ UMOBILE-enabled UAV devices able to collect and relay relevant information and

connect two isolated areas.

¶ UMOBILE-enabled gateways/proxies provide interconnectivity between

UMOBILE domain and the Internet domain.

UMOBILE is being developed as a modular software architecture, where some modules may

or may not reside in a specific hardware element. From a functional point of view, we can

further classify the UMOBILE architecture in the following way:

¶ UMOBILE GATEWAY (1)

¶ UMOBILE SERVICE MANAGER (2)

¶ UMOBILE HOTSPOT (4)

¶ UMOBILE End-User SERVICES (3), which include:

o Some services running in background (users unaware)

Á Contextual manager

Á NDN-Opp

Á KEBAPP

Á NREP

o A List of APPs (usersȭ aware, based on their preferences)

Á Oi!

Á Now@

Á Route-Planner

Based on the previous classification, the UMOBILE architecture can be further described as

in Figure 2, which is a broadening of Figure 1 as it contains different scenarios where the

UMOBILE platform can find application. Figure 2 highlights the relationship among the

defined components.

10

Figure 2. Functional blocks of the UMOBILE platform

The following sections describe the defined functional components focusing on the

interaction among modules. Please refer to D.5.1 ȰValidation methodology and evaluation

reportȱ for a detailed description and validation of each of the components.

2.1. UMOBILE Gateway

The UMOBILE Gateway provides interconnectivity between the UMOBILE domain and the

Internet domain. Such device can be employed by service and content providers to act as

repositories, being able to store data received through the IP network and then to share it

over the UMOBILE network (or vice-versa) upon request. In the framework of the UMOBILE

project, focus is on service and content sharing over the UMOBILE network.

UMOBILE Gateways can be part of the infrastructure of service/content providers or civil

authorities, being employed as repositories supporting both the IP and the UMOBILE part

of the network. In particular, providers can utilize UMOBILE Gateways as ȰÅÎÔÒÙ ÐÏÉÎÔȱ of

the UMOBILE network, connecting their legacy IP-based infrastructure with other

UMOBILE nodes, as depicted in Figure 2. This point of entry is normally expected to reside

in the ÐÒÏÖÉÄÅÒȭÓ premises. Depending on the deployment model, though, any UMOBILE

hotspot can act as Gateway, if it is equipped with an IP interface and has sufficient storage

and processing power.

11

The gateway assumes its role by providing universal access to content or services located

in both the host-centric and information -centric domain. For example, a service in the IP

domain can be ȰÆÅÔÃÈÅÄȱ by the UMOBILE gateway ɀ with the help of the Service Manager ɀ

and stored in the UMOBILE part of the network . Thus, it is available to the UMOBILE users

by the repository; the users can choose to download it and deploy it, as they like. In essence,

the gateway provides a common pool of shared services and information between the two

domains, assisted by the service migration mechanisms.

As a UMOBILE node itself, a UMOBILE Gateway is employing the full UMOBILE platform,

being, thus, able to forward data over the DTN interface if required.

2.2. Service manager

A central aim of the UMOBILE project is to build a service-centric architecture that is

capable of supporting the deployment of a diverse set of services with different QoS

requirements ranging from bestɂeffort to guaranteed QoS with different degrees of

stringency. We address the challenge by means of integrating the abstractions natively

provided by the ICN paradigm, Delay Tolerant Network (DTN) techniques and

opportunistic service migration to the edge of the network. In pursuit of this aim, we have

developed three technologies:

¶ DTN framework,

¶ Service Migration Platform,

¶ KEBAPP (Keyword-Based Mobile Application Sharing).

The details of these three technologies are described in D3.3 ȰUMOBILE ICN layer

abstraction initial specificationȱ; we now focus on the Service Manager, which is one the

devices we can identify in the UMOBILE architecture, as depicted Figure 2.

A detailed discussion of service migration, and the role of service manager in the UMOBILE

architecture, is presented in D3.1 Ȱ5-/"),% architecture report ɉρɊȱȢ In this section, we

present a high-level overview about its functionality, focusing on its integration with DTN

and KEBAPP.

2.2.1. Network architecture integration of service migration, DTN and KEBAPP

For the sake of clarity , in order to show the potential exploitation of Service Manager in

practical applications, we will use the hypothetical emergency scenario discussed below. It

is worth emphasizing that the scenario is a simplified version of the use case documented

in D2.1 Ȱ%ÎÄ user Requirements 2ÅÐÏÒÔȱȢ The same scenario will be then included in the

proof-of-concept described in section 4.

1. Imagine an area that has been struck by an undesirable event such as a fire, floods, or

earthquake, etc.

12

2. Consequently the network infrastructure in that area is temporarily disturbed by the

event.

3. Upon being notified (over a secondary channel) about the situation, a rescue team

arrives to the area and contacts (over a secondary channel) the Service Manager to

request the deployment of emergency computing services in the affected area.

4. The expectation is that the services are available for the benefit of the rescue team and

the victims of the event under the observance of specific QoS requirements. For

instance, some services might tolerate arbitrarily long and unpredictable latency

whereas others are latency-sensitive. Examples of such services are web servers that

offer news and maps of affected area.

We now explore how the request of the rescue team can be fulfilled by the combined efforts

of the service migration platform, DTN framework and KEBAPP framework. We open the

discussion with a description of the network infrastructure and proceed to explain the

integration of the service migration platform and DTN and service migration platform and

KEBAPP. The integration of the three technologies together is left for futur e work.

Figure 3. A view of UMOBILE service integration (with focus on service migration)

Figure 3 shows the core of the network architecture for the integration of the service

migration platform, DTN and KEBAPP.

¶ UMOBILE Domain : The UMOBILE Domain is a set of nodes deployed with UMOBILE

software so that they are able to take advantage of the NDN facilities. It includes

network routers (for example, R3) and applications hosts (for example, HS2). All the

components shown in the UMOBILE domain require the UMOBILE platform

software to support applications such as these demonstration scenarios. However,

13

the deployment of UMOBILE platform software in end usersȭ devices is optional

since these devices can use conventional IP interfaces to connect to the UMOBILE

domain. A UMOBILE Gateway links the UMOBILE Domain to the conventional

Internet .

¶ Gateway: The UMOBILE Gateway is responsible for connecting the UMOBILE

Domain to the Global Internet. Its functionality is to convert NDN Interest Requests

to HTTP requests and HTTP responses to NDN Response. In the figure, it is deployed

in one of the NDN routers (R0).

¶ Routers (R1, R2, R3, R4): standard NDN router. We assume that UMOBILE Routers

are in possession of storage that they use for in-network caching and for storing

application level information such as dockerized service images.

¶ Hotspots (HS1, HS2, HS3, HS4): A Hotspot is a conventional computer with wireless

communication facilities that can offer connectivity to End-user Devices (D1, ȣȟ D4).

It has disk storage facilities and virtualiz ation software. In our experiments, we use

Docker virtualization technology. Likewise, to implement the Hotspots we use

Raspberry Pi computers that are capable of executing Linux containers.

¶ End-users devices (D1, D2, D3, D4): An End-user device is a mobile device with

wireless facilities and interested in accessing services provided by the ISP provider.

We assume that mobile devices communicate with the UMOBILE Hotspots over

conventional HTTP.

¶ Service Provider : We assume the emerging business model where network

providers are responsible for providing both network connectivity and access to

services to end-users. In the figure, we assume that the service provider is the owner

and in full control of the resources included in the UMOBILE Domain. Consequently,

the Service Producer has delegated to the Service Provider the responsibility of

deploying the services.

¶ Service Producer : It is an entity in possession of some arbitrary services of interest

to the end-users. He stores them as compressed dockerized images sia, sib, sic and sid

which are at the disposition of the Service Provider.

¶ Services images (sia, sib, sic, sid): A service image is a compressed dockerized images

stored within the Service Producer.

¶ Services (sa, sb, sc, sd): A service is an application of interest to the end-user that can

be instantiated from a corresponding compressed dockerized image. We assume

that the services demand different levels of QoS, for instance different latencies. For

example, service sa is latency-sensitive whereas sd is latency-tolerant.

¶ Service Manager : The Service Manager is a piece of software that implements all

the functionality that the Service Provider needs to deploy his services, including

disk space to store both services and compressed images. In the figure, the Service

Manager is strategically deployed on a computer directly connected to the Gateway.

This deployment simplifies the task of transferring compressed service images from

the global Internet to the UMOBILE Domain. At the heart of the Service Manager is a

14

decision engine that is responsible for the actual deployment of services.

¶ Decision Engine (DE): The decision engine is a piece of software with all the

necessary logics to make decisions about service deployment and migration. The

decision engine has access to monitors deployed strategically within the UMOBILE

Domain and instrumented to collect metrics about conditions of interest. On this

basis, it decides about which services to deploy, when and where. For example, it

creates a second replica of a given service in a neighbor Hotspot when the

monitoring reports that the first replica is overloaded.

¶ Monitors (M1, M2): A monitor is a software tool for collecting real time information

about the status of the resources included in the UMOBILE Domain, such as network

conditions and current usage of their Hotspot resources (CPU, memory and disk).

Only two monitors are shown in the figure, yet there is nothing to prevent from

deploying as many as necessary. A good example of a monitor is a Python script

deployed in the Raspberry Pi used to implement a Hotspot to measure and report

its current free memory.

In subsequent sections, we explain how the core infrastructure can be used for addressing

the QoS requirements demanded by the emergency scenario discussed above.

2.2.2. Integration of service migration with DTN

This section explains how the integration of the service migration platform with the DTN

framework can help to deploy services in a location with partitioned from the main

network. The aim is to demonstrate how the service migration platform can be integrated

with the DTN framework to mask network problems (for example connectivity failure) to

honor QoS, such as those demanded by the described scenario.

We will explain a potential situation with the help of Figure 4, which is the result of an

adaptation of Figure 3.

15

Figure 4. A view of UMOBILE deployment with focus on service migration

2.2.2.1. Service deployment request

1. Let us assume that HS5 is located is the affected area and consequently, as shown in

the figure, the network cable between HS5 and R4 is broken down. We assume that

the routers and the Hotspots are instrumented with the service migration and DTN

software that we have developed, such as the Pi (a conventional Raspberry Pi

computer) shown in the figure. The Pi is only a specific realization of a mobile device

with wireless facilities. It can equally be realized as a conventional Android mobile

phone or by a UAV capable of flying over the affected area (backwards and forwards

between R4 to HS5). The monitor M1 attached to HS5 is a Python script that

provides the Decision Engine with the status of the CPU, memory and disk HS5. We

will deploy a monitor in each Hotspot and a similar tool in strategic locations to

measure network conditions.

2. Upon arrival to the area, members of the rescue teams use their mobile devices (for

example, mobile phones) to connect to the Hotspots and request the Content

Provider to deploy emergency services sa and sd in HS5.

3. Let us assume that the Service Manager is aware that the functionality of sd is not

affected by the latencies and that sa is. On this basis, the Service manager configures

his decision engine (not shown in the figure) to:

a. deploy sd in the core of his network (rather than attempting to deploy it as

close as possible to the end user). sd will be deployed in any of the Hostspots

as long as the selected one has enough CPU, memory and disk resources to

Internet	

Router

Hosting Server

Pi

 Gateway

Service Manager

R1

R2

R3

R4

HS1

HS2 HS3

HS4
HS5

D1 D2 D3 D4 Enduser Device

X

Service Producer

sia, sib, sic, sid

UMOBILE Domain

M1

DE

16

host it. This point will demonstrate that the Decision Engine is aware of the

different level of QoS that the services need.

b. deploy sa in HS5 using the facilities provided by the DTN. This is a sensible

solution provided that sa can operate independently, that is without the

support of the core ICN network infrastructure. To achieve this task, the

Service Manager copies the sia to R4 and instructs the Pi to upload it and

download it to HS5. This point will demonstrate the functional integration of

the service migration platform and the DTN framework. We will quantify the

results as explained next

2.2.2.2. Service migration facilities

To copy sia from the Service Producer repository to R4, the Service Manager uses the

facilities of the service migration platform that we are implementing based on abstractions

offered by the NDN network. Central to the execution of this task is the Push-based

communication model with publish data dissemination explained in D3.3 UMOBILE ICN

layer abstraction initial specification. In brief, in this model, the content producer (the

Service Manager in this example) initiates the data transference to the data consumer (to

R4 in this example.).

1. The Service Manager issues an Interest packet (for example,

ȰÒτȢÃÏÍȾÓÅÒÖÉÃÅÓȾÅÍÅÒÇÅÎÃÙȾÎÏÌÁÔÅÎÃÙͺÔÏÌÅÒÁÎÃÅȾÓÉÁȾÐÕÂȱɊ for the benefit of R4

who has registered an interest with the Service Manager.

2. Upon receiving the notification , R4 issues an Interest packet (for example

ȰÓÅÒÖÉÃÅÍÁÎÁÇÅÒȢÃÏÍȾÓÅÒÖÉÃÅÓȾÅÍÅÒÇÅÎÃÙȾÎÏÌÁÔÅÎcy_tolerance/sia) against the

Service Manager to fetch the sia.

The responsibility of deciding what services to deploy, when and where lies with the

decision engine. The decision engine is instrumented with the necessary logics to make

decisions, for example taking this simple scenario and assuming that sd and sa are of type 1

and 2 respectively, the decision engine can be programmed to execute:

switch (serviceType){

case 1: /* latency tolerant services */

 if (local HostingServer found) then t riggerLocalDeployment

 else send Error to Service Manager;

 break;

case 2: /* latency sensitive services */

 if (remote Hotspot found) then trigerRemoteDeployment

 else send Error to Service Manager;

 break;

}

Such a logic can be implemented as a conventional Python script code or alternatively, as

17

declarative rules to be reasoned about and executed by a reasoning engine like Intellect,

PyKE, Drools or PyCLIPS, all depending on the complexity of the decisions to be taken.

We can describe the operation flowchart in the following way:

1. Deploy monitors (Python or shell scripts) in strategic locations to collect metrics

about the status of the Hotspots and their network links and report their

observances to the decision engine.

2. Use tools (Python or shell scripts) to place requests against the Service Manager to

deploy sa and sd.

3. Use tools (Python or shell scripts) to place requests against sa running in HS5.

4. As point 3 is executed, use tools (Python or shell scripts) to collect D4-HS5 latency

metrics and plot them. They should be or of the order of a few milliseconds.

For the sake of comparison, and knowing that HS1 has enough resources to host sa we will

use it to host sa and conduct the following experiment to demonstrate that sa is not

operational under poor latency guarantees.

1 Use tools (Python or shell scripts) to place requests against sa hosted in HS1,

measure D4-HS1 latency and plot the results.

2 The results will explain that the deployment of sa in HS1 is unsuitable.

2.2.3. Integration of service migration with KEBAPP

We devise two scenarios where the KEBAPP service and the service migration platform can

work integrated providing interesting features to the project. In the first case, the service

migration platform migrates a local service to the hotspots. Once migrated, the service can

be accessed and shared among users through KEBAPP-enabled applications. In the second

case, the service migration can migrate a local repository to the UMOBILE hotspots in order

to provide to the users that are not KEBAPP-enabled, the apk (the application installer of

the KEBAPP-enabled application) necessary to enable local communications with other

users.

KEBAPP-enabled services in UMOBILE hotspots

KEBAPP is an application-centric framework for opportunistic computing at the edge of the

network on mobile devices such as smartphones and tablets. It allows a mobile device to

exchange information, in an opportunistic way, using smartphone apps, locally, with other

devices that happen to be in that area. By locally we mean without involving

communication with the global Internet. Examples of information that can be exchanged

by KEBAPP-enabled devices are traffic problems, shopping opportunities in the area, lost-

and-found articles, etc.

18

To be able to participate in a KEBAPP group, a mobile device needs have installed the

KEBAPP framework included in the UMOBILE end-user service (presented as an apk file)

and a KEBAPP-enabled application.

A KEBAPP group can be a set of users sharing the same application that want to locally

communicate to other users to share content and/or computation resources. For example,

a KEBAPP-enabled application can be a Route-Planner application, able to calculate routes

for other users that do not have the information necessary to calculate those routes or do

not have connection to Internet. Another example could be a concert scenario, where a

group of users can share pictures of the event using the same application. However, in all

these examples, some problems may arise when a set of users are connected using Wi-Fi

Direct without any participation of the infrastructure, such as the following.

¶ Battery: Wi-Fi Direct communications can waste smartphones battery, especially

for the group owner (the leader that manages the Wi-Fi Direct group).

¶ Intermittent connectivity: 5ÓÅÒÓȭ mobility can generate several disconnections, and

therefore instability in the communications or broken messages, especially when

the group owner leaves the group that implies a disconnection of the entire group.

¶ Limited resources: Caching and processing capabilities in smartphones are more

than enough; however, users may rather avoid sharing smartphone resources with

other users, such as local storage, data plans or other resources.

For all these reasons, we think deploying KEBAPP-enabled services in UMOBILE hotspots

can have benefits, in order to centralize communications between users without resource

limitations and providing more stable communications

UMOBILE store migration

To be able to participate in a KEBAPP group, a mobile device needs to download and deploy

the KEBAPP-enabled application (presented as an apk file) from a conventional Apache

web server (for example, Google play). Let us call it the UMOBILE store (UStore).

The drawback of downloading KEBAPP apk file from the core of the network is the traffic

cost and the time to download. In this section, we will demonstrate that the aforementioned

problems can be avoided by the opportunistic deployment of the UMOBILE store as close

as possible to where the potential KEBAPP users are. The central idea is to regard the

UMOBILE store as a service that can be dockerized and manipulated (deployed, replicated,

etc.) by the service migration platform.

The network infrastructure that we will use for integrating the service migration platform

and KEBAPP is shown in Figure 5. UStore represents the UMOBILE store whereas KEBAPP

19

group is a group of users that can potentially run KEBAPP.

Figure 5. Integration of service migration and KEBAPP

2.2.3.1. Service migration facilities

Let us assume that the provider of the ICN infrastructure of Figure 5 has been delegated

the responsibility of deploying a KEBAPP-enabled service (we consider a UMOBILE store

as a KEBAPP-enabled service as well) and imagine the following situation.

1. The KEBAPP-enabled service has been dockerized and stored as a compressed

image, say siK in the Service Producer from where the Service manager can retrieve

it when needed.

2. D2 issues a request against the Service Manager to expressing interest in the

deployment of KEBAPP. Let us assume that D2 has access to HS3, HS2 and HS1.

3. Upon receiving the request, the Service Manager instructs his Decision Engine to

deploy siK as close as possible to D2 but under the consideration of the current

network conditions, the features (disk, memory and CPU capacity) of the potential

Hotspots (HS3, HS2 and HS1) and their current status such as currently available

memory. The idea is that some of the candidate Hotspots might not have the

resources to run the KEBAPP-enabled service.

4. To make informative decisions, the decision engine relies on up to date information

collected from several sources such as network monitors and actual Hotspots. Of

central interest are parameters related to QoS. For instance, a Hotspot will be

selected by the decision engine when certain conditions hold, for example, when

Round Trip Time is above the acceptable level, or memory usage is above 85%.

2.2.3.2. Service deployment technology

Inter
net	

Router

Hosting Server

 Gateway

Service Manager

R1

R2

R3

R4

HS1

HS2 HS3

HS4

HS5

D1 D2 D3 D4

Enduser Device

Service Producer

sia, sib, siu, sid

UMOBILE Domain

DE

M1

M2

Ustore	

KEBAPP group

20

The decision engine collects memory usage data by means of pull requests. Upon a

successful migration, the selected UMOBILE hotspots are able to serve the KEBAPP-enabled

service locally. This service migration process will run over NDN while utilizing both push

and pull communication models.

The aim is to demonstrate how the service migration platform can be used to deploy Ustore

at the edge of the UMOBILE platform, for example in HS3, HS2 or HS1 on the basis of the

reports sent to the decision engine by the resource consumption monitors deployed in HS3,

HS2 or HS1. We can describe the operation flowchart in the following way:

1. Deploy monitors (Python or shell scripts) in HS3, HS2 and HS1 to collect metrics

about the status of their CPU memory and disk resources. Measured metrics are sent

to the decision engine.

2. Use tools (Python or shell scripts) to enable D3 to place requests against the Service

Manager to deploy Ustore and to download the apk KEBAPP file as soon as it

becomes available. D3 awaits for a response.

3. The decision engine will deploy Ustore in HS3 as long as HS3 has enough resources

to host the Ustore service.

4. D3 request should be satisfied.

5. Use tools (Python or shell scripts) to force the CPU, memory and disk consumption

of HS1, HS2 and HS3. For example, bring the resources of HS1 and HS2 to exhaustion

and instruct D3 to place requests as in point 2.

6. Verify that the decision engine is capable of deploying Ustore in a Hotspot with

enough resources. For example, the decision engine never selects a Hotspot with

75% of its memory consumed.

Figure 6 presents the operation flowchart of the integration of service migration and

KEBAPP. The service-provisioning block operated as a connection point between the

service migration framework and service/content providers (e.g., rescue team, fire

fighters) that want to deploy their services on a UMOBILE network such as the

infrastructure shown in Figure 4. In this example, we will deploy the UMOBILE KEBAPP-

enabled service to demonstrate the feasibility using KEBAPP in the emergency and civil

protection scenarios. The decision engine inside the service manager function block

collects information from a monitoring system and feeds it to a rule-based reasoning engine

that makes decisions about where and when to migrate a service (the UMOBILE store in

this example). The monitoring system fetches information about network condition and

available resources (e.g., CPU, memory) from all UMOBILE APs through a push and pull

communication model (details discussed in D3.1 and D3.3). After migrating the UMOBILE

store service, the end users can use their mobile devices to connect to the UMOBILE

Hotspot to download the KEBAPP apk file.

21

Figure 6. Flow chart of service migration with KEBAPP application

2.3. UMOBILE Hotspot

Typically, wireless (or Wi-Fi) hotspots are essentially wireless access points providing

network and/or Internet access to mobile end-user devices, e.g., in public locations.

UMOBILE-enabled hotspots are specific UMOBILE network devices, like usual hotspots, but

they support the UMOBILE architecture, can run services locally and are compatible with

the UMOBILE services.

UMOBILE-enabled hotspots may be able to collect and relay relevant information (e.g., alert

messages, instructions from emergency authorities), host some instantiated services or

store collected data, check its validity and perform computational functions (e.g., data

fusion) to increase the value of the information to the civil authorities.

UMOBILE
Hotspot

Isolated
UMOBILE
Hotspot

UAV

a) UMOBILE connected hotspot b) UMOBILE isolated hotspot
Figure 7. UMOBILE hotspot

22

The specific characteristics of the UMOBILE-enabled hotspot (UMOBILE AP) are the

following:

¶ UMOBILE hotspots can be isolated (not connected to the Internet) or connected to

Internet.

¶ UMOBILE hotspots can host local services deployed using the service migration

platform.

¶ UMOBILE hotspots can provide KEBAPP-enabled services that UMOBILE users are

not able to provide due to network restrictions, data-plan restrictions or battery

restrictions.

¶ UMOBILE hotspots can support DTN, through IBR-DTN, and can integrate service

migration.

¶ UMOBILE hotspots can be deployed in isolated UAVs, providing local services and

DTN capabilities, or in connected UAVs (through a data uplink), providing

connectivity services.

¶ UMOBILE hotspots can be compatible with NREP in order to prioritize emergency

services and messages.

¶ UMOBILE hotspots can gather social and context information that will be later used

by the NDN-Opp and/or PerSense.

¶ UMOBILE hotspots can be collocated with gateway functionalities in order to

provide IP network services to the local opportunistic network. E.g. through

KEBAPP Services (e.g. map service) to UMOBILE network (gateway function).

2.4. UMOBILE End User Service s

For UMOBILE deployment, the users need the UMOBILE end-user Services (UES) installed.

The UES comprise a set of UMOBILE services running in background (of which users are

unaware) and a list of native applications, which can be used to experience the performance

of UMOBILE under different settings.

The NDN-OPP is a new branch the NDN Forwarding Daemon, currently being developed to

the Android platform with extensions to function according to an opportunistic networking

paradigm. These additions include the implementation of new forwarding strategies, along

with support for Wi-Fi Direct communications.

The UMOBILE Contextual Manager is a UMOBILE service that runs in background, and

captures information concerning the device affinity network (roaming patterns and peers

over time and space) as well as concerning usage habits and interests (internal device

information). Metrics derived from such contextualization are then passed, upon demand

or periodically, to other UMOBILE modules (e.g. to the Routing module, where NDN-Opp

23

resides) to assist in different network operational aspects.

Another service running in background is KEBAPP that enables users to share their own

applications with nearby users. In a sense, the client application instance can also act as a

server instance in order to serve requests from nearby users.

NREP service is a name-based replication priority mechanism, which considers

prioritization rules to spread emergency information, along with indicators of the social

behavior of users collected via the UMOBILE Contextual Manager Module, to assist in a

more efficient data dissemination.

Some applications exploiting UMOBILE benefits are: Oi!, Now@ and Route-Planner.

Now@ is an Android application, which enables users to share data, based on their

interests over an NDN infrastructure . It is based on a distributed implementation, which

requires the client apps to include a synchronization scheme for data pertaining to each

interest.

In what concerns Oi!, this is an application which allows the users to exchange messages

independently of the availability of Internet access, by exploiting the direct wireless

communications capabilities (i.e., Bluetooth and Wi-Fi direct) available in personal mobile

devices (please refer to D.3.1 for details).

Route-Planner is a KEBAPP-enabled application which allow users request route

calculations to other users nearby that are using the same application without connecting

to the Internet or without having the maps locally

The end-user devices shall also have installed PerSense Mobile Light , which is an example

of an external application that the Contextual Manager can be plugged to, to collect data.

The purpose is to show how the Contextual Manager can be easily extended to collect new

parameters, by relying on external applications.

The end-user UMOBILE services are being designed in a modular way, expected to be cross-

compilable for a mult itude of platforms, and taking into consideration the potential for

embedded systems. Nevertheless, validation will be done in Android devices and, if feasible,

in UNIX devices also.

2.4.1. Operation flow chart

Figure 8 provides a simplified illustration of the basic implementation of a UMOBILE end-

user device. The UMOBILE software package is composed of NDN-Opp along with services

24

running in background (Contextual manager, Kebapp, NREP) on top of which user

applications can be built (e.g.: Oi!, Now@, Route-Planner).

Figure 8. UMOBILE End-user device

The architecture of a UMOBILE end-user device includes the NDN-Opp module, the KEBAPP

framework and the NREP system, which packages a modified version of NFD along with the

Router, the Contextual Manager and various applications that make use of them for

communication. The interface between NDN-Opp and the Contextual Manager is composed

of two means of communication:

¶ Operation (1) is a request from NDN-Opp to the Contextual Manager to get a

collection of values of INDICATORS concerning DEVICES within a certain

TIMEPERIOD. This information is used to re-compute the routes.

¶ Operation (2) is a notification by the Contextual Manager to the Router regarding

changes of connectivity in the set of devices nearby. Specifically, it is envisioned as

providing the Router with a list of devices along with the change to their availability

(devices can become AVAILABLE or UNAVAILABLE).

NDN-Opp and KEBAPP are two complementary mechanisms integrated into a single end-

user system and developed over the NFD daemon. Both functionalities aim at different

purposes, NDN-Opp is aimed at social routing and KEBAPP is aimed at one-hop application

sharing. Therefore, both software are developed in the same platform but they do not share

specific interfaces (others than the ones already available in the NDN implementation)

since are independent. NREP is the third component, and will not be a communication

system by itself, but a mechanism to enable priorities for emergency services based on

different parameters, such as application priority, time validity or spatial scope. NREP

25

could be integrated with both, NDN-Opp and KEBAPP. In the next version of this deliverable

(D5.4) this integration will be reported.

KEBAPP is being developed in WP3 and the details of its operation and implementation will

be described in D3.1 and D3.2. NREP is being developed in WP4, the details of NREP

mechanism will be reported in D4.3.

We now provide an initial description of the NDN-Opp functionality , starting by describing

the Router, as illustrated in Figure 9.

Figure 9. Router in a UMOBILE End-user device

The Router essentially fulfills two functions.

On a periodic basis, it performs the Routing function that is decomposed as follows.

First, the Router uses interface (1) in order to obtain a fresh set of INDICATORS. Second, it

performs an update to the Routing Information Base (RIB), which consists in computing

the value of the metric for the various routes stored therein. Third, the Router performs the

selection and introduction of the routes into the Forwarding Information Base (FIB) of

NFD*.

The second function (Face management) is performed in response to a notification (2) by

the Contextual Manager of a list of changes to the availability of neighboring devices. The

Router processes each entry of the provided list as follows. If a device becomes

UNAVAILABLE, the associated OppFace in NFD* is brought DOWN. On the other hand, if a

device has become AVAILABLE, its OppFace must be brought UP in response. However, in

the event the device was previously unknown, a new OppFace must be created for it first.

26

Figure 10. OppFace of NDN-Opp

The opportunistic nature of the NDN-Opp includes the need to have a CARRIER function

introduced into the node. The new OppFace introduces a queuing mechanism that

implements this function. Whenever the forwarding logic of NFD* decides to send a packet

(Interest, Data or Nack) down an OppFace, the behavior depends on its STATE. If it is UP

(i.e., communication is possible), the packet is transmitted over the channel to the next-

hop. However if the OppFace is DOWN (i.e., communication is not possible at the moment),

the packet is placed into a QUEUE until the next-hop becomes available.

When an OppFace is brought UP or DOWN, its STATE must be set accordingly. However, in

the case it is brought UP, the packets in its QUEUE can be transmitted over the channel to

the next-hop.

The modifications introduced in NFD (viz. packet format) must be reflected into a Java

library which is used by the Applications to communicate over NDN.

27

3. UMOBILE Lab

3.1. Description

The lab is conceived to be remotely used by each partner through a VPN connection and is

constituted by a number of devices as Wi-Fi access points, Linux systems (Raspberry PI)

and Android systems (Banana PI). The lab is finali zed to cover the proposed UMOBILE use

cases. It allows test sessions in which the human activity is simulated through the Android

devices and the results are automatically collected.

The lab is intended to proof the integration of the architecture and services, developed in

WP3 and WP4 with different components, such as mobile nodes, sensor nodes, backhaul

links of different type, Wi-Fi infrastructure/equipment. It aims to become a complete

prototype implementation of UMOBILE platform and the proof-of-concept, which

integrates the selected modules, derived from results developed in WP2, WP3, and as WP4.

Specific applications developed in the course of the project will be initially demonstrated

in the lab, with the software modules developed during UMOBILE. Whenever feasible, and

based on the dissemination plans of WP6, the lab shall be used to provide project results,

and even to collect data in different events (e.g. conferences), data which can then be

provided to the community to enhance further studies.

In accordance with the objectives of WP5, the lab will help to:

¶ practically demonstrate the overall platform of the project;

¶ quantitatively evaluate the outcomes of WP3 and WP4;

¶ implement scenarios with increasing complexity;

¶ improve the performance of the operational procedures;

¶ test the limits of the system and of its operational capabilities.

At the end of the project, the lab will be an overall technological validation of UMOBILE

platform, including a working proof -of-concept .

Figure 12 outlines a testbed, with the UMOBILE gateway, some UMOBILE hotspots (access

points), and some UMOBILE users. In a more realistic testbed, the APs will be far away from

the wired network, as in Figure 13.

28

The detailed complete architecture is represented in Figure 13.

In the testbeds, the human users and their devices are replaced by Android and Linux

black -boxes; these black-boxes will receive commands from a test robot , i.e., a software

program issuing defined test sequences of commands to the applications running on the

black-boxes. The test robot is depicted on the right side of Figure 13. The test robot is

connected to each black-box through the test network .

Figure 12. UMOBILE testbed: more realistic architecture

Figure 11. UMOBILE testbed: simplified architecture

