On Uncoordinated Service Placement in
Edge-Clouds

Onur Ascigil*, Truong Khoa Phan*, Argyrios G. Tasiopoulos®, Vasilis Sourlas*, Ioannis Psaras*, and George Pavlou*

*Department of Electronic and Electrical Engineering, University College London, UK.
Email: {o.ascigil, t.phan, argyrios.tasiopoulos, v.sourlas, i.psaras, g.pavlou}@ucl.ac.uk

Abstract—Edge computing has emerged as a new paradigm
to bring cloud applications closer to users for increased perfor-
mance. ISPs have the opportunity to deploy private edge-clouds in
their infrastructure to generate additional revenue by providing
ultra-low latency applications to local users. We envision a rapid
increase in the number of such applications for ‘“‘edge’” networks
in the near future with virtual/augmented reality (VR/AR),
networked gaming, wearable cognitive assistance, autonomous
driving and IoT analytics having already been proposed for edge-
clouds instead of the central clouds to improve performance. This
raises new challenges as the complexity of the resource allocation
problem for multiple services with latency deadlines (i.e., which
service to place at which node of the edge-cloud in order to
satisfy the latency constraints) becomes significant. In this paper,
we propose a set of practical, uncoordinated strategies for service
placement in edge-clouds. Through extensive simulations using
both synthetic and real-world trace data, we demonstrate that
uncoordinated strategies can perform comparatively well with the
optimal placement solution, which satisfies the maximum amount
of user requests.

I. INTRODUCTION

Cloud computing is facing new challenges in meeting the
quality-of-service (QoS) requirements of emerging applica-
tions such as virtual/augmented reality (VR/AR) [1], inter-
active networked gaming, wearable cognitive assistance [2],
and edge (video, IoT) analytics [3] to name a few. We
argue that the most pressing requirement of those emerging
applications is the response latency; that is, the delay between
submitting a request to the network and getting the outcome
of the computation delivered back to the user. Centralized
data-centers are not the appropriate place for achieving small
response latencies because of the potentially high network
transmission delays in wide area networks.

At the same time, there has been an increasing variety of
network edge and access devices with general-purpose compu-
tational resources such as base stations, access points, and edge
routers. In addition, deployment of small-scale data centers at
the “network edges” (i.e., close to users), named cloudlets [4]
or micro-clouds have been proposed to accommodate heavier
demands. Moreover, with the recent advances in virtualization
technology, only the application code and shared libraries can
be packaged exclusively (e.g., Docker containers, Unikernels).
In particular, Unikernels are very lightweight in size and can
also be instantiated (i.e., boot up) in up to just few hundreds
of milliseconds.

As a result, there is a current trend for deploying small-scale
cloud resources closer to users at the ISPs in a decentralized
manner [5], [6], [7]. In a decentralized edge-cloud, a set of
paying Application Providers (APs) run virtualized instances
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Fig. 1: An edge-cloud within a single domain.

of their services. This has the potential to greatly reduce the
round-trip delay and to provide higher end-to-end bandwidth
to users, while bringing revenue to the edge-cloud providers.
Specifically, we assume a private edge-cloud business model
(possibly operated by an ISP) who owns and manages a
distributed edge infrastructure consisting of computation spots,
i.e., network locations/nodes where computational capabilities
are offered, similar to the one shown in Fig. 1. As opposed to
large-scale, purpose-built cloud architectures that can provide
on-demand invocation of services with essentially unlimited
elasticity, the computational resources at the edge-clouds are
expected to be highly contended, and fully-utilized especially
at peak times.

In an environment where computing power is available at
several different points (e.g., attached to network routers and
PoPs) along the path from the client to the back-end cloud,
network operators need to be prepared to allocate computation
facilities to user applications according to the applications’
requirements. We envision that those requirements will come
mainly in terms of response latency. We also envision that the
code to run the packaged application is stored in repositories
within the domain or even locally stored at the computation
spots. In this work, we specifically assume that code for
any application is available at every computation spot/node.
Given that computation capacity is less than storage capacity
(following price trends), only a subset of those services are
then instantiated (i.e., one or more VMs are dedicated and
running) and can serve incoming requests.

The problem of which services to instantiate at which node
highly resembles the well-investigated problem of resource
storage allocation. For instance, the problem of choosing
which content to cache locally, given that local storage ca-
pacity at the cache node is less than the storage available in
the back-end cloud, has been studied extensively, e.g., in [8].
In this work, we argue that the problem of which services to
instantiate at a computation spot can be seen from a similar
angle. We, therefore, apply principles of cache management



research to allocate computing resources and attempt to find
out whether well-known resource placement and allocation
techniques, such as Least Recently Used (LRU) and Least
Frequently Used (LFU), can also be applied to edge-computing
environments.

The main advantage of such uncoordinated resource alloca-
tion techniques is their simplicity—i.e., they require no central
coordination among the distributed set of computation spots.
In a single or multi-ISP setting, we consider computation spots
available and provisioned on-path towards a central (back-
end) cloud, where the default path for each service request
terminates. We assume that each service is associated with
a deadline on the response delay and user requests contain
their remaining deadlines associated with the service they
request. The edge-clouds use only the remaining deadline on
the incoming requests to perform admission, scheduling and
placement decisions.

Related work in the area of resource allocation and request
routing for edge-clouds have considered optimal allocation of
services and dispatching of requests to edge-cloud nodes, e.g.,
[9], [10], [11]. In general, these proposals attempt to minimize
the average response time of the edge-clouds without consid-
ering individual QoS requirements of applications, which we
model in the form of deadlines on response delays. More im-
portantly, the existing proposals for optimal allocation require
some form of coordination among the nodes, for instance, in
determining the least-congested node for routing the requests.
In this work, we consider resource allocation strategies, which
require no coordination and communication overhead. Our
findings with synthetic and trace-based workloads demonstrate
that the examined uncoordinated resource allocation strategies
can perform comparably well in comparison to a centralized
scheme, which has the knowledge of all future requests and
instantaneous load on the edge-cloud nodes.

The rest of this paper is organized as follows. In Section II,
we discuss related work. We discuss the uncoordinated re-
source allocation strategies involving admission, scheduling
and placement decisions in Section III. Then in section IV,
we briefly explain the centralized, optimal resource allocation
scheme that we use as a benchmark in our evaluations in
Section V. Finally, we conclude the paper in Section VI.

II. RELATED WORK

Existing research has outlined the incentives for ISPs to
deploy cloud resources for third-party applications closer to
the users [4], [6]. Although extensive research has been con-
ducted on the placement of service instances in decentralized
edge-cloud architectures, the majority of those have considered
computation offloading tasks for a single service (e.g., image
processing) e.g., [10], [12], [13]. Instead, we focus on the use
case of bringing multiple third-party cloud applications closer
to users, where each application has its unique service quality
(QoS) requirement. We model the QoS requirement with an
upper-bound (i.e., deadline) on the response latency; that is the
delay between sending a request to the network and getting
the result back by the user. We argue that response delay is the
most pressing requirement of the emerging applications (e.g.,
virtual/augmented reality (VR/AR) [1], interactive networked

gaming, wearable cognitive assistance [2], and edge (video,
IoT) analytics [3]) to motivate the adoption of edge-clouds.

Similar to our work, Hou et al. considered placement of
services at an edge-cloud that is connected to a back-end
cloud through a backhaul connection [14]. This work considers
various strategies to determine when to replicate a service in
an edge-cloud based on the downloading cost (in terms of
bandwidth) of the service. An LRU-like replacement policy is
used to choose which service to remove when a new one is
downloaded. However, this work does not consider queuing
and execution times of service requests, which we take into
account. More importantly, we focus on the utilization of the
edge-cloud resources and QoS of applications when replicating
services instead of just the downloading cost.

In [11], Tan et al. consider the problem of optimally
scheduling and dispatching of tasks to distributed edge-
clouds assuming central coordination to get up-to-date (com-
putational) congestion level at each node so that tasks can
be submitted to least-congested nodes. This work considers
scheduling of services, and propose Highest Residual Den-
sity First (HRDF) scheduling, which aims to minimize the
completion times of tasks. In our work, we consider deadline-
based scheduling to satisfy hard deadlines on user requests.
An admission policy determines whether a request can be
successfully executed, and the edge-cloud nodes only accept
a request if they can meet the deadline.

Tong et al. propose hierarchical cloud deployment as a way
to handle peak loads effectively [10]. Here we also adopt a
similar provisioning of edge-cloud nodes as on-path resources.
In particular, the requests are simply routed towards the back-
end cloud and are opportunistically executed by the edge-
cloud nodes along the path (see Fig. 1). In addition to the
distributed (i.e., uncoordinated) placement methods, we also
provide a centralized, offline method for the placement of
application instances, in order to meet the service deadlines.
Similar offline solutions for edge-clouds have been proposed,
albeit without considering individual service quality (i.e., in
terms of deadlines).

III. UNCOORDINATED RESOURCE ALLOCATION
STRATEGIES

We perform opportunistic, on-path execution with uncoordi-
nated resource allocation in edge-clouds. Resource allocation
involves admission, scheduling and placement mechanisms.

A. Admission and Scheduling of requests

An admission decision precedes scheduling and is made on
each incoming service request to decide whether to accept and
perform the task associated with the service. Because resources
are constrained, computation spots only admit requests whose
deadlines can be met. A request r for service s might be
rejected for execution at a given computation spot for the
following reasons: i) s has not been placed in the spot (i.e.,
not instantiated in a VM) and ii) requests admitted and have
to be served before r according to the scheduling policy
need more time than 7’s deadline (i.e., congestion). Requests
rejected at a computation spot are forwarded towards the
central cloud (and not towards peer computation spots), and



may be opportunistically executed at another computation
spot along the path, as shown in Fig. 1. If rejected by all
spots/nodes along the path, a request arrives at the central
cloud, where it is guaranteed to be executed; albeit missing
its deadline.

Here we assume two non-preemptive scheduling policies:
i) Earliest Deadline First (EDF) and ii) First-In-First-Out
(FIFO). These policies determine the order of execution for
the admitted requests waiting in the input queue. Once a
request is admitted by a node, it is guaranteed by the node
to meet its deadline. To that end, at the time of admission,
a “completion time” is computed for each request. Only if
the calculated completion time is not greater than the current
time plus the remaining deadline, then the request is admitted.
In FIFO policy, the computation of the completion time is
straightforward and is computed only once for each request.
In particular, the completion time in FIFO is equal to the
execution time of the given request r plus the waiting time for
the execution (i.e., summation of the corresponding execution
times) of the requests that have already been scheduled for
execution before the corresponding request.

In EDF requests for services with smaller (i.e., stricter)
remaining deadlines are always executed before requests (al-
ready admitted) with larger remaining deadlines. In EDF the
completion time of each admitted request has to be recomputed
for each new request arriving at the given computation spot.
Particularly, assuming only one CPU core for the spot, the
completion time for a request 7, is equal to the execution time
of r plus the waiting time for the execution of the requests
with stricter deadlines that have already been scheduled for
execution. In EDF requests with higher remaining deadline
are always “pushed” further down in the input queue after
new requests with shorter deadlines. If after the computation
of the completion time of every request in the queue all the
deadlines can still be satisfied, then the new request is finally
admitted and scheduled for execution otherwise is rejected.

B. Service Placement

In order to admit and schedule a service request, a compu-
tation spot/node has to either i) have loaded the service as one
of its VMs, or ii) have the service code in its local memory
to initialize it upon request. Constrained by the main memory
capacity, a service placement policy decides which services
will be loaded/instantiated in the node as the running services.
Placement/replacement decisions are based on the ranking, for
a given metric, of all services in the service population (i.e., set
P). We define as R the set of services running in a given spot
(IR| << |P]). To perform the ranking, each computation node
collects the following information for each service s, namely
the number of requests admitted (if s was in R already) and the
number of requests rejected and propagated upstream due to
congestion (or because s was not instantiated). Also, for each
request 7 for a service s, each node computes an Adequate time
which is equal to the current time plus remaining deadline time
minus the completion time (see above). The Adequate time for
a service is the average of the Adequate times of each request
for that service.

Based on the total number of requests (admitted and re-
jected) and the average Adequate time of each service, a node
uses two different ranking metrics to periodically decide which
of them will be included in the running set R (i.e., some
will be remained and some will be replaced). Generally, the
goal of any placement policy is to keep cores/VMs “busy”
(i.e., maximize the use of the available edge-cloud resources)
and meet the corresponding request deadlines. Here we will
examine the following ranking policies:

« Strictest Deadline First (SDF): The ranking is done based
on the Adequate time. SDF ranks higher services whose
requests have the least remaining deadline and can still
be executed at the node. The node includes in the R set
as many services as possible based on the corresponding
ranking. In case a service with strict deadline is running at
a VM, but there are still rejected requests, the node will
initialize more VMs to satisfy the corresponding service
before serving other (possibly more popular) services with
less strict deadlines (assuming that a VM can process one
request at a time).

o Least Frequently Used (LFU): The ranking is done based
only on the total number of requests (used as the utilization
metric). This metric does not prioritize services with strict
deadlines, but it considers placing a service s in R, only if
requests for s is feasible, i.e., it had arrived with sufficiently
large remaining deadlines to allow execution at the node.

o Hybrid: The ranking utilizes both the number of requests
and the Adequate time. Hybrid first ranks the services
by their Adequate time. The node then forms a list of
services by eliminating services whose average Adequate
time permits delegation to upstream spots/centralized cloud.
This list of services is then sorted by their utilization metric
(admitted and rejected requests) to obtain a sorted list of
services. Hybrid includes in the R list as many of these
services as the memory size of the node permits.

o Least Recently Used (LRU): Service replacements are
performed according to the least recently used ordering of
services.

Using the above ranking policies, each node can perform
service placement/replacement procedures independently. This
procedure can take place either periodically at specific or
random periods or upon the arrival of a request for a given
service. Here we will examine both of these approahes. For the
per-request placement, we use the LRU ranking policy. Partic-
ularly, when a request arrives and the corresponding service is
not currently running (i.e., not in set R) at the node, the service
code is loaded from the secondary storage as a VM (with some
boot up delay) and one of the least popular service’s VM is
replaced. However, the request itself is rejected since the boot
up latency typically exceeds the deadline of the request. We
assume that the edge-cloud nodes prefetch the service VM
kernels (i.e., code) beforehand (possibly from a repository in
the central cloud) to prevent extra delays in instantiation.

In the periodic placement schemes, each node reevaluates
the services that it is currently running (i.e., set R), and at
given (i.e., replacement period) or random periods uses one of
the ranking policies to perform the placement of the services
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Fig. 2: Auxiliary graph.

in the local memory of each node. These periodic schemes are
similar in rationale to the off-line cache replacement schemes
found in literature (e.g., [8]).

IV. CENTRALIZED RESOURCE ALLOCATION STRATEGY

We develop a centralized algorithm working for service
placement and routing decisions for predefined time slotted
intervals. The algorithm requires centralized execution (i.e.,
coordination) and the knowledge of all future requests. We
formulate the placement and routing problem using mixed
integer linear program (MILP). To that end, we first create
an auxiliary graph based on the hierarchical cloud model,
containing computation spots as the nodes, as shown in Fig. 2.
Also, we introduce two additional virtual nodes S and F
namely “virtual source” and “virtual fail” nodes, respectively.
We add virtual links to connect S to all the other nodes
(including F) whereas node F' only connects to S and the
leaf nodes in the tree topology. All the virtual links have zero
latency. Based on the auxiliary graph, the MILP model will
find paths from the virtual source S to every “user”. A user
in our formulation refers to a group of users whose network
attachment point is near the same leaf node (i.e., computation
spot). Each path has a format of the form: [S, serving node,
[set of intermediate nodes], user], which is a routing solution
to show how a user reaches the node running the required
service. This node is the one just after S in the path. For
example, a path [S, Na, N3, u1] would mean that user u;
will be served at N5 and the route to reach Ny will be [ug -
N3 - No]. A special path [S, F', user] (there is no intermediate
node) would mean this user request is to fail/rejected as it is
served by the “virtual fail” node F'. The objective of the MILP
model is to minimize those failed requests. Only when a user
cannot find a serving node within its deadline, the MILP model
forces this user to be served at node F'.

The corresponding MILP objective function is:
min Z Dijmng (D

ijeD

We use variable 2, to indicate fraction of requests from user
i for service j which will be served at node v. D% is the
demand volume of user ¢ for service j. Note that we allow
to have multi-path routing where it is possible to have more
than one path from S to a user 4. For instance: rdp = 0.2,
ngl = 0.3 and z" S ~, = 0.5 would mean the following: for
the user 4 and service j: 20% of the requests are to fail, while
30% and 50% of them will be served at node N; and N,

respectively. By using the objective function (1) we try to

minimize the number of failures. Given the objective, we add
the following constraints for the formulation.
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Eq. (2) is the flow conservation constraint to guarantee finding
paths from the virtual source S to every user i. There will be
no flow outgoing from the user ¢ and no flow incoming to
the virtual source S. For intermediate nodes, the outgoing and
incoming flows should be equal.
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Constraint (3) is a capacity constraint (C,, is the capacity of
each node v). Each node on the network has limited resources
in terms of cores (i.e., VMs to serve requests).
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We use constraint (4) to force binary variable 3% to be 1,
if user 7 and service j use the link uwwv. Using this binary
variable, constraint (5) is used to compute service response
time for each request (4, 7). The response time includes round-

trip network latency (3.« P Lyyy¥)) and service execution

time (R ySU) at the node serving the request. In constraint
(5), we consider all possible paths (PZ € P?) connecting the
virtual source S and the user i and make sure that if a path P}
is used, the response time using this path should be less than
the deadline 7%. It is noted that the special path [S, F), i]
always satisfies the deadline since the network latency is zero
(all virtual links have zero latency). However, as the objective
(1) minimizes the number of failing requests, user requests
are assigned to the virtual node F' if and only if there are no
other available nodes that can serve the requests within their
deadlines.

Resource allocation in edge-cloud infrastructure is known
to be an NP-hard problem [10], [13], and in our MILP model
the complexity depends on the number of possible paths
between the virtual source S and the potential users (can be
of exponential size).

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of LRU, LFU,
SDF, and Hybrid strategies, presented in Section III, using a
wide range of parameters. We compare the performance of
these uncoordinated strategies with the optimal (i.e., centrally
coordinated) placement strategy introduced in Section IV. The
objective is to evaluate their performance in terms of success
in meeting service request deadlines. Next we describe the
setup of our evaluations, before presenting the experiments in
the remaining sections.



A. Evaluation Setup and Metrics

For the evaluation of the proposed replacement strategies,
we use a packet-level, discrete time event simulator based on
Icarus [15]. Icarus is originally a simulator for evaluating the
performance of networks of caches. The simulator code with
our modifications and the scripts to generate the results are
made publicly available!. We simulate the strategies using a
binary tree topology with a height of five (i.e., root and four
sub-levels). The root of the tree is the back-end cloud for all
the services containing infinite resources, and the leaf nodes
act as the gateway nodes without computing power, where
users are attached to. The internal nodes of the tree form the
network of autonomous edge-cloud nodes (i.e., computation
spots), each performing placement, admission and scheduling
in an uncoordinated manner. We uniformly distribute compu-
tational resources for the execution of services in terms of
number of CPU cores and assign two cores per each node.
The small number of cores per computation spot is due to
scalability of the simulator; thus, each node in the network is
meant to represent a miniature model of a computation spot.

We consider a scenario, where the service population of
interest is 103 services. Note that 10 items is not meant
to represent all possible edge-cloud services in the Internet.
Instead, this set consists of the services that a private edge-
cloud can execute within an edge domain (e.g., one or more
ISPs). Each service is associated with an execution time and
a deadline. In order to generate a deadline for a service (say
s), we first generate a random time value (in ms) between the
following lower- and upper-bounds: RTT from gateway node
to its adjacent edge-cloud at the lowest level of the tree (lower-
bound), RTT to reach the central cloud from the gateway
node (upper-bound). This randomly generated value is added
to the execution time of s to generate its deadline. Thus, we
consider only latency critical services, whose requests can only
be satisfied (i.e., response delay within the deadline) through
edge-cloud nodes and not the back-end cloud. That said, we
choose a small execution time for each service selected from a
range of 1-5 ms, and we assume homogeneous nodes, where
requests of the same application require the same execution
time.

In our simulations, we ignore the data sizes and the
transmission delays; instead we consider propagation delays
of links and queuing delays of user requests waiting to be
executed. We assign inter-connection latencies as follows: each
link connecting two edge-clouds has a propagation delay of 20
ms, the links connecting edge-clouds (at the top-level of the
tree) to the back-end cloud have a latency of 60 ms to represent
the wide area network latencies [16]. The gateway (leaf) nodes
connect to the edge-cloud nodes (at the lowest-level of the
tree) with a latency of 2 ms and to users with negligible
latency. In order to simplify the service size provisioning in the
experiments, we assume that each service has the same storage
requirement for its instance in the memory. The total storage
capacity for the entire edge-cloud network is a parameter in
our experiments, and we uniformly distribute the total capacity
(e.g., B services) among the edge-cloud nodes. As mentioned

I github.com/oascigil/icarus_edge_comp

TABLE I: Default evaluation parameters.

Parameter Value
Number of edge-cloud nodes in the tree 14
Size of service population P 10°
Total service storage capacity B 1.0-P
Average request rate per second 10°
Zipf exponent (for synthetic workloads) | 0.75
Service Execution Time 1-5 ms
Replacement period 30s
Scheduling Policy EDF

before, we assume that each edge-cloud node prefetches and

stores service source codes (e.g., Unikernel image) in advance,

before instantiation.

Our evaluation is based on the following performance
metrics:

« Mean satisfaction rate (in percentage of issued requests):
The ratio of requests that are executed and returned back to
their originating user within their service deadlines.

o Percent Idle Time: The ratio of the time that the computa-
tional cores are staying idle, i.e., not executing any services.
This metric indicates the utilization of resources at the edge-
clouds.

During the experiments, we compute these metrics periodi-
cally at the end of each replacement period using the requests
that arrived during the period. As mentioned before, at the end
of a replacement period, each edge-cloud reevaluates the set of
currently running services and may replace a subset of those
based on the replacement strategy. We use a default replace-
ment period of 30 seconds. We first present experiments using
synthetic workloads followed by trace-based experiments. In
both workloads, user requests are generated in the network
with an aggregate mean rate of 10° requests per second,
and each request is assigned to a randomly chosen gateway
node where it originates from. The association of request to a
service type in synthetic workload is generated using a Zipf
distribution, which determines the service popularity. We use
a default Zipf exponent of 0.75 for the synthetic workload,
and in Section V-E, we consider different Zipf exponents. The
rest of the default parameters are listed in Table 1.

For our evaluations, we use three synthetic workloads,
which have different correlation between service popularity
and deadline strictness: i) positive, ii) negative and iii) un-
correlated. In the positive (negative) correlated workload, the
most popular (unpopular) services have the strictest deadlines.

B. Comparison of Strategies

In the leftmost plot of Fig. 3, we depict the satisfaction rate
of the strategies using the synthetic workload with uncorrelated
service popularities and deadlines. The first data point in this
plot and all the other plots correspond to the first replacement
period (0-30s), during which a randomly chosen set of services
are hosted (instantiated at ¢ = 0) at each edge-cloud node. We
observe that LFU and Hybrid strategies improve their satisfac-
tion rates gradually during the subsequent replacement periods



70

60

50 | /\

40 :

30 SDF —+— LRU, prob=0.1 1
HYBRID —*— Optimal

20 LFU 4

10 E

100
80

60

Satisfaction Rate

40

Percent of Satisfied Requests

20

L L L
150 200 250
Time (sec)

L L
50 100 300 0

Services (with decreasing popularity)

T T T 100 T T T T T
SDF —+— LFU
HYBRID —%— LRU, prob=0.1
80 | 1
° SDF —+—
E HYBRID —>—
N LFU ]
o2 LRU, prob=0.1
| bS]
o
o
J 20
GRCURE
0 s s s s s
200 400 600 800 1000 50 100 150 200 250 300

Time (sec)

Fig. 3: Performance of strategies with service popularity uncorrelated with deadlines.

80

SDF

T 100
R

LFU j j :
70 % HYBRID —%— LRU, prob=0.1
€ 100 80
60 =3 N SDF —+—
g ———————f ¢ _ [#d g HYBRID —>—
T 50 / ° & st LFU i
5 2 2 LRU, prob=0.1
5 G 3
5 40T 2 60 =
8 & § 40
5 3 40 5 \
207F g 2 =l 3 % ]
SDF ——  LRU, prob=0.1 ) =L 0 [ A
10r HYBRID —*— Optimal o ¢ - _
LFU R T Lonick i
ol . | . . o i ol . . . .
50 100 150 200 250 300 0 200 400 600 800 1000 50 100 150 200 250 300
Time (sec) Services (with decreasing popularity) Time (sec)
Fig. 4: Performance of strategies with service popularity negatively correlated with deadlines.
- - - 100
60 SDF —— LFU
o HYBRID —%— LRU, prob=0.1
€ 100} 80
o T 3 { % °
Q E
T i 4 E
T 40} /;/\ A T 8oy % E |
s \_{ 2 K o 60 //4/4—/‘—4
] 2 &% e}
S aof 5 © %g & a0 .
s ¢ I g
8 20} 5 a4t 5 o~
w T - o
8 20 -
10 SDF ——  LRU, prob=0.1 S 20t
M " & . SDF —+— LFU
HYBRID Optimal S i HYBRID —%—  LRU, prob=0.1
ol i . . o ol ) : h h
50 100 150 200 250 300 0 200 400 600 800 1000 50 100 150 200 250 300

Time (sec)

Services (with decreasing popularity)

Time (sec)

Fig. 5: Performance of strategies with service popularity positively correlated with deadlines.

(i.e., every 30s) with some minor fluctuations in the beginning.
In general, such fluctuations occur due to overestimation of
demand for some popular services, for which individual edge-
cloud nodes at different levels of the tree simultaneously
instantiate VMs. Eventually, the nodes closer to the leaves
serve increasingly more requests for those services, which
filters the requests reaching upstream. This in turn leads to
a different observable popularity of services at the nodes at
higher levels.

The Hybrid strategy has slightly higher satisfaction rate than
the LFU strategy and performs less than 10% worse than
the optimal strategy as can be seen in Fig. 3. As opposed
to the Hybrid, LFU and SDF strategies that perform service
placement periodically, the LRU strategy potentially performs
one (re)placement per request, which leads to frequent inter-
vals with VMs booting up and shutting down. As a result,
LRU achieves steady satisfaction rate around 40% worse than
LFU and Hybrid strategies. In all the experiments, we use a
probability of instantiation of 0.1 for the LRU strategies. A
higher probability of instantiation, leads to worse satisfaction
rates for LRU (we omit those results due to space limitations).

On the other hand, the SDF strategy is unable to achieve
and retain a satisfactory performance. This is mainly because
SDF does not consider service popularity. In particular, the
SDF strategy instantiates an additional VM for a service (say
s) with the smallest remaining deadline as long as there is at

least one request for s that has been “missed/rejected”. This
leads to increasing amount of underutilized VMs as can be
observed in the idle times metric shown in the rightmost plot
in Fig. 3. Conversely, the LFU strategy replaces the VMs of the
least utilized services (during the last replacement period) with
services that have the highest number of missed requests, and
as a result, it attains significantly lower idle times than SDF.
The Hybrid strategy also performs similarly and eliminates
services with low popularity to increase the utilization.

In the middle plot of Fig. 3, we demonstrate the satisfaction
rates of individual services. The services in the z-axis are
sorted in decreasing order of popularity. As expected, the
LRU strategy performs increasingly well for services with
increasing popularity. The Hybrid and LFU strategies are
more selective in services to instantiate in that they both
achieve significantly higher satisfaction rates for the most
popular services, while less popular services have negligible
satisfaction rates. SDF strategy, on the other hand, achieves
high satisfaction rate for services with the least remaining
deadlines, but since those services are not necessarily popular,
the overall satisfaction rate is low.

In the leftmost plot of Fig. 4, we depict the satisfaction rate
of the strategies using the synthetic workload with inverse
correlated service popularities and deadlines (i.e., the most
popular services have the least strict deadlines). The optimal
strategy achieves better performance than in the uncorrelated
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Fig. 6: Performance of LFU, SDF and Hybrid strategies for FIFO and EDF scheduling.

workload, since it is possible to satisfy the deadlines of a
higher percentage of requests when there is a larger number
of requests for less strict services, i.e., such requests can
be successfully executed at one or more edge-cloud nodes
along the path leading to the central cloud. The existence
of popular services with more flexible deadlines is a chal-
lenge for uncoordinated strategies, because the majority of
requests can be executed at multiple levels of the tree and
instantiating the same set of services at multiple levels can
lead to underutilized nodes. Nevertheless, both the Hybrid and
LFU strategies achieve a similar satisfaction rate as with the
uncorrelated workload. SDF strategy performs slightly better
with the negatively correlated workload. As can be seen from
the middle plot of Fig. 4, the LFU and Hybrid strategies
satisfy the most popular services. SDF, on the other hand,
selects services with minimum remaining deadline at each one
of the three levels of the tree topology (independent of their
popularity), and we observe three peaks corresponding to those
three levels.

We depict the performance of the strategies using the
synthetic workload with positively correlated popularity and
deadlines (i.e., most popular services have the strictest dead-
lines) in Fig. 5. In this scenario, the majority of the requests
can only be successfully executed at the lowest levels of the
tree. Therefore, there is an increasing contention for such
popular service requests, which leads to a reduction in the
overall performance of all the strategies with the exception
of SDF, as shown in the leftmost plot of Fig. 5. The Hybrid
strategy performs significantly better than the LFU, because
Hybrid can prioritize services that are both popular and have
the smallest remaining deadlines at each node at various
levels of the tree (as can be observed with the three peaks
in the middle plot). On the other hand, LFU instantiates only
the most popular services (with strict deadlines), which can
tolerate only minimal additional queuing delays when the
computational cores are busy. As a result, the LFU strategy
is not able to admit some of the incoming requests, when
the node is already busy processing requests for the same
(popular) service.

Overall, the Hybrid strategy performs the best and achieves
near optimal results for the uncorrelated and positively corre-
lated workloads, and suffers from coordination problems (i.e.,
over-replicated instances at different levels of the tree) in the
case of the negatively correlated workload. LRU strategy is
not affected by correlation in the workload and achieves the
same (considerably worse) satisfaction rate.

C. Impact of Storage Capacity

Here, we examine the impact of the aggregate storage
budget (in terms of number of services) on the performance
of the uncoordinated replacement strategies. Due to space
limitations we omit the corresponding plots, but we report
that as expected, all the strategies have increasingly higher
satisfaction rates as a result of being able to host a larger
number of services (i.e., 50%-60% increase in the satisfaction
ratio of the system when increasing total storage capacity from
500 to 1500 services).

D. Impact of Scheduling Policy

In all the previous experiments, we have used EDF schedul-
ing by default. In this section, we investigate the performance
gain from EDF scheduling by comparing it with the simple
FIFO for LRU, LFU, and Hybrid strategies using the three
types of synthetic workloads in Fig. 6. We observe that all
the three strategies achieve better satisfaction rates with EDF
scheduling compared to FIFO using the uncorrelated workload
(leftmost plot). In both the positively and negatively correlated
workloads (middle and rightmost plots, respectively), there is
negligible difference in the performance of the strategies with
EDF and FIFO. This is expected, because with a correlated
workload, the majority of the requests have similar deadlines,
and therefore EDF’s ordering of requests by their remaining
deadlines have little impact on the satisfaction rate.

E. Impact of Service Popularity Distribution

In the above scenarios, we used a default Zipf exponent
value of 0.75 when determining the items popularity. As
expected, the higher values of Zipf exponent leads to higher
satisfaction rate for all the strategies. The LRU strategy, in
particular, performs comparably well with LFU and Hybrid
for Zipf exponents close to one. For space considerations, we
omit the plots for the experiments with various zipf values.
In the experiments so far, we used synthetic workloads with
stationary distributions of services in the requests. In the next
section, we use a trace-based workload with non-stationary
distribution of services.

F. Trace-based Simulations

We use a data set containing the request arrivals to a
Google cluster [17], which contains over three million requests
issued in a period of seven hours. Each request is associated
with a “ParentID” field that identifies its service, and there
are a total of 9218 unique services in the data set. The
most popular service has more than 200K requests, while
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Fig. 7: Performance of strategies using trace-based workload.

5150 services only have one request. Based on this trace, we
generate a workload associating each request with a service
using the trace data. We randomly assign deadlines to each
service without a correlation between popularity and strictness
of deadlines. We use the same default request rate of 10K
requests per second. This results with a total simulation time
of around 300s. As before, we report the popularity of the
strategies at each replacement period of 30s.

LRU strategy achieves the highest overall satisfaction rate
among all the strategies as shown in the leftmost plot of
Fig. 7. This is because of the non-stationary nature of the
trace-based workload. We observe sudden changes in the
distribution of requests in the trace data, and LRU can re-
spond to such changes much faster than the other strategies,
because it performs service (re)placement with each request as
opposed to every 30s. We have observed better performance
for Hybrid and LFU with smaller replacement periods, but
we do not provide results for varying replacement periods
due to space considerations. The smaller replacement periods
also have an additional cost: instantiation (i.e., boot time) of
a Unikernel typically takes between 2-400 milliseconds on an
ARM processor [18]. During the instantiation, a VM is unable
to process requests, and this cost is already included in all our
experiments by keeping the VM idle for a random period of
time (randomly chosen in the interval [2—400] ms). Similar to
our previous results in Section V-D, we observe that the EDF
scheduling improves the satisfaction rates of all the strategies
as can be seen in the rightmost plot of Fig. 7.

VI. CONCLUSIONS

Inspired by the extensively studied field of distributed cache
resource management, we investigated several uncoordinated
resource allocation/management strategies in an edge-cloud for
the deployment of latency-critical services. Specifically, the
edge-cloud nodes with computing power act autonomously
and make individual resource allocation decisions, and user
service requests are processed opportunistically at one of the
nodes along the shortest path to the back-end cloud. We
have proposed resource allocation strategies to carry out user
request admission, scheduling, and (re)placement of service
VMs (to cater for the changing user demand) in order to
maximize the QoS experienced by users. We modeled QoS
requirements of latency-critical services with upper-bounds
(i.e., deadlines) on the response delay experienced by users,
which is the time from the submission of a request until the
results are returned.

We have formulated a centralized algorithm for the optimal
resource allocation. We have shown with both synthetic and
trace-based workloads that uncoordinated resource allocation
strategies can achieve near optimal performance, which comes
with no communication or coordination overhead as opposed
to optimal, centralized solutions. The uncoordinated solution
only requires each node to monitor the RTT delay to upstream
nodes, and deduct this delay from the deadline of a request
placed in the packets when forwarding requests upstream.
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