
Keyword-Based Mobile Application Sharing
through Information-Centric Connectivity

Dr Ioannis Psaras
EPSRC Fellow / Lecturer
University College London
Email: i.psaras@ucl.ac.uk
Web: http://www.ee.ucl.ac.uk/~ipsaras/

I. Psaras, S. Rene, K.V. Katsaros, V. Sourlas, N. Bezirgiannidis,
S. Diamantopoulos, I. Komnios, V. Tsaoussidis, G. Pavlou

Cisco Symposium
“Exceeding the Limits”
20th – 21st March 2017
Paris

Best Paper Award
ACM MobiArch 2016

The Cloud is not enough

<rant>
• Always trying to reach the cloud does
not work

– E.g. trains, airplances, crowded areas

• 5G needs to integrate some edge-computing functionality
• The cloud is neither the only nor the best way
• There are enormous amounts of computation and storage available

around us
– 5G has to exploit the computation, storage and software resources of edge devices

(smartphones, tablets, Raspberry PIs, WiFi APs)

• Connecting randomly to the nearest device does not work
– Information-Centric Connectivity becomes necessity when we need to specify to

which of the 100s of smartphone devices to connect to.
– This need does not exist when we always connect to the main cell tower

</rant>

What is KEBAPP – Contribution

Route Finder App Game or Video-Streaming Server

Super Boring!

An application sharing and information-
processing framework for smartphone apps

What applications does KEBAPP deal with –
Design Space

• By and large, smartphone apps target:
– Static content, e.g., news updates
– Personalised content, e.g., Facebook/Twitter updates
– Processed information, e.g., route finder, gaming

• Keep demand for local services, locally!

We envision a pool of application resources to provide D2D
access to processed and non-personalised information

Where/When do we need KEBAPP
(Target environments)

• Overcrowded areas
– Airports, festivals, stadiums, IETF :)

• Fragmented networks
– Natural disasters (floods, earthquakes)

• Not (or poorly) connected environments
– Airplanes, trains, ferries, developing regions

In most of those cases, Internet connectivity is not even
necessary!

How does KEBAPP work?

1) Application-centric naming
– Applications share common name-spaces

and support the use of keywords
2) Application-centric connectivity

– Applications manage connectivity by defining
and/or joining WiFi broadcast domains

3) Information-centric forwarding
– Extending Named Data Networking
primitives

Applications act both as clients and as servers

Three Main Components

In Name Out

Internal
face #1

/a/b/c#t1#t2 BSSID1

BSSID2 /d/e/f#t3#t4 Internal
face #2

Data Chunck Name

2a3b69e43f9bd48937 /d/e/f#t3#t4

Prefix BSSID Face

/a/b/c BSSID1 Internal
face #1

/d/e/f BSSID2 Internal
face #2

Content Store PIT FIB

Named Data Networking
Interest and Data Packets

Interest packet
Name
Nonce

Optional selectors

Data packet
Name

Content
Signature

Names are defined by applications: /net/ucl/www/ipsaras/index.html

NDN Node Architecture
Three Tables

Cache Memory

List of outstanding
Interests in terms
of interfases

Table of outbound
interfaces for
Interests

NDN/CCN

IEEE Communications Magazine • July 201230

DATA-ORIENTED
NETWORK ARCHITECTURE

In DONA, NDOs are published into the net-
work by the sources. Nodes that are authorized
to serve data, register to the resolution infra-
structure consisting of resolution handlers
(RHs). Requests (FIND packets) are routed by
name toward the appropriate RH, as illustrated
in Fig. 2, steps 1–4. Data is sent back in response,
either through the reverse RH path (steps 5–8),
enabling caching, or over a more direct route
(step 9). Content providers can perform a wild-
card registration of their principal in the RH, so
that queries can be directed to them without
needing to register specific objects. It is also pos-
sible to register NDO names before the NDO
content is created and made available. Register
commands have expiry times. When the expiry
time is reached, the registration needs to be
renewed. The RH resolution infrastructure
routes requests by name in a hierarchical fashion
and tries to find a copy of the content closest to
the client. DONA’s anycast name resolution pro-
cess allows clean support for network-imposed
middleboxes (e.g., firewalls, proxies).

CONTENT-CENTRIC NETWORKING
In CCN, NDOs are published at nodes, and rout-
ing protocols are employed to distribute informa-
tion about NDO location. Routing in CCN can
leverage aggregation through a hierarchical nam-
ing scheme. NDO security is achieved through
public key cryptography. Trust in keys can be
established via different means, such as a PKI-like
certificate chain based on the naming hierarchy, or

information provided by a friend. Requests (inter-
est packets) for an NDO are forwarded toward a
publisher location, as illustrated in Fig. 3, steps
1–3. A CCN router maintains a pending interest
table (PIT) for outstanding forwarded requests,
which enables request aggregation; that is, a CCN
router would normally not forward a second
request for a specific NDO when it has recently
sent a request for that particular NDO. The PIT
maintains state for all interests and maps them to
network interface where corresponding requests
have been received from. Data is then routed back
on the reverse request path using this state (steps
4–6). CCN supports on-path caching: NDOs a
CCN router receives (in responses to requests)
can be cached so that subsequent received requests
for the same object can be answered from that
cache (as depicted in steps 7–8, Fig. 3). From a
CCN node’s perspective, there is balance of
requests and responses; that is, every single sent
request is answered by one response (or no
response). CCN nodes can employ different strate-
gies for requests (re-) transmission pace and inter-
face selection depending on local configuration,
observed network performance, and other factors.
The NDN project advances the CCN approach. It
provides a topology-independent naming scheme
and is exploring greedy routing for better router
routing scalability.

PUBLISH-SUBSCRIBE INTERNET
ROUTING PARADIGM

In PSIRP, NDOs are also published into the
network by the NDO sources as illustrated in
step 1, Fig. 4. The publication belongs to a par-

Figure 3. CCN overview.

Cache

Router

Requester

Application

CCN

PITFIB

API

Cache

Source

Application

CCN

PIT

3

4 2

5

1 7

8

6

FIB

API

Cache

Requester

Application

CCN

PIT

API

Cache

CCN

PITFIB
Cache

Router

CCN

PITFIB

FIB

In CCN, NDOs are
published at nodes,
and routing proto-

cols are employed to
distribute informa-
tion about NDO

location. Routing in
CCN can leverage

aggregation through
a hierarchical naming

scheme. NDO
security is achieved
through Public Key

cryptography.

AHLGREN LAYOUT_Layout 1 6/21/12 2:51 PM Page 30

One Interest - one Data packet

Routers do Longest Prefix Matching on Interests

Data follows breadcrumbs

Three tables

Hierarchical Names
/net/ucl/www/ipsaras/index.html

B. Ahlgren et al. “A Survey of Information-Centric Networking, IEEE Communications Magazine 2012

Information-Centric Mobility

• Content is the addressable entity
– Not the host!

• Content is the routing target
– Not the host!

• Interface to the content is used
– Not to a socket!

• Content is secured individually
– Not the communication channel!

No need to keep references of moving nodes

Information Exposure through Names

• ICN can enable features not possible with IP
– Exposure of information through names.

A network-layer naming scheme that enables fine-
grained description of the desired processed information

User Mobility in ICN

– Interests come from users
and therefore can follow
the right path

– Very straightforward, no
hassle

Interest

User mobility is inherently supported

What is KEBAPP – Contribution

Route Finder App Game or Video-Streaming Server

Super Boring!

An application sharing and information-
processing framework for smartphone apps

Application-Centric Naming (App IDs)

• Needs to support fine-grained description of the desired processed
information

• Fixed part: NDN hierarchical naming, longest prefix match
– Needs to guarantee compatibility between applications
– Can define static content: /NewsApp/politics/
– Or invoke computation: /myTravelAdvisor/Top10Restos
– App GUI indicates naming, users do not have to be aware of naming

• Hashtags: free keywords to assist application processing
– Enables partial matching of responses to requests
– /myTravelAdvisor/Top10Restos #userRating; #London; #indian
– /routeFinder/tube #euston; #waterloo

exchange of files over an opportunistic network. Similarly, the
Floating Content [8] concept leverages ad-hoc communications
among mobile users to share local information. According
to Floating Content, message and information replication is
limited in time and space. The proposed solutions so far aim at
either enabling IP-based connectivity in mobile environments,
or supporting the generic, application-agnostic exchange of
content and computations often employing ICN primitives,
e.g., name-based routing and forwarding [9]. Named Function
Networking (NFN) [10] extends the resolution-by-name ICN
primitives providing in-network data computations, but without
enabling application sharing in mobile environments.

Last, but not least, the recent trend towards “distributed
edge-mobile or fog computing” is pushing application logic
closer to the end user [11]. Although still in its early days,
the concept of fog computing attempts to bring computation
and processing of information (i.e., the cloud) closer to the
end-user. The main benefit of this paradigm is more efficient
use of resources and reduced response latency.

In this article, we take a step further from content sharing,
host-centric communications and fog computing and focus
on the prevailing application-centric computation and commu-
nication model. The proposed framework explicitly enables
access to the desired processed and non-personalised infor-
mation through the concept of application sharing, effectively
leveraging on a pool of application resources. Namely, we
leverage application-centrism to facilitate information discov-
ery through application-driven and application-defined, hierar-
chical namespaces. Given the ad-hoc nature of the proposed
computation framework, our approach further extends these
namespaces by introducing the concept of keywords, i.e., free-
text or application-driven (GUI) parameters used to enable the
invocation of applications at co-located mobile devices. This
enables the description, discovery and retrieval of processed in-
formation, further supporting variable accuracy results, instead
of only exact matches, e.g., a search result that does not contain
all search terms. Note that the invocation of remote processing
(in co-located smartphone or WiFi AP devices) is central to
our framework, as opposed to previous work on retrieving
static content from nearby devices. Our keyword-based mobile
application sharing framework (KEBAPP), manages connec-
tivity in an application-centric way, i.e., coupling connectivity
options and opportunities to applications and their namespaces.
KEBAPP extends existing ICN primitives, namely CCN/NDN,
thus resulting in a generic solution across different applications
and overcoming the pitfalls of IP.

II. THE KEBAPP FRAMEWORK

We present KEBAPP, a new application-centric information
sharing framework oriented to support opportunistic computing
between mobile devices. Our approach targets scenarios where
large numbers of mobile devices are co-located, presenting the
opportunity for localised, collective computing with a special
focus on application sharing and information processing. In
this context, KEBAPP employs application-centrism to fa-
cilitate/enable (i) the exchange of processed information, in
contrast to merely static content, and (ii) the discovery and
delivery of information to satisfy user interests.

Figure 1, presents the structure of a KEBAPP-enabled
host. KEBAPP provides a new layer between the application

Fig. 1. KEBAPP-enabled host

and the link layers exhibiting three major design features.
Namely, (i) application-centric naming, where applications
share common name-spaces and further support the use of
keywords (Section II-A), (ii) application-centric connectivity
management (KEBAPP WiFi Manager), where applications
manage connectivity by defining and/or joining WiFi broadcast
domains (Section II-B), and (iii) information-centric forward-
ing, extending CCN/NDN primitives (Section II-C).

A. Naming

The discovery and invocation of services/applications in the
networking vicinity of a user builds on a naming scheme that
enables the fine-grained description of the desired processed
information. To this end, KEBAPP builds on the observation
that mobile computing is largely application-centric, i.e., users
tend to access information using purpose-built applications,
rather than web-browsers. Application-centricity presents a
series of important characteristics:

• Applications inherently support the structuring of the
namespace within their semantic context. In turn,
instances of the same (or similar) application can
share the same namespace in describing the related
information, e.g., categories in a news application.

• Applications are inherently used for computa-
tion, enabling the (lightweight) processing of con-
tent/information, e.g., searching, sorting data or com-
puting a route.

Hierarchical
Partz }| {

/a/b/c/| {z }
App Market
App Developer

�
Hash Tagsz }| {

#tag1, #tag2| {z }
App Developer

Fig. 2. Keyword-based Names

Taking these features into account, KEBAPP names are
composed of two main parts (see Figure 2):

Fixed Hierarchical Part. It follows the hierarchical nam-
ing scheme of CCN/NDN and its purpose is to guaran-
tee compatibility between instances of the same or dif-

Application-Centric Connectivity
• Application-specific 802.11 broadcast domains, through

Basic Service Set(s), BSSs
– Need a “hook” between BSS and the corresponding application
– Every KEBAPP application advertises its own SSID, through

WiFi Direct Groups
– WiFi Neighbour-Awareness Networking (NAN) can find

applications behind BSSs – also optimised for energy efficiency

gameX tripAdvisor
routeFinder

*K.V. Katsaros et. al. “Information-Centric Connectivity”
IEEE Communications Magazine, August 2016.

Route calculated

RouteFinder request

WifiDirect Connection

AP-assisted and D2D operation

BSSID1

BSSID2

BSSID3
/MyNewsApp

/RouteFinder

/MyTravelAdvisor

BSSID3
/MyNewsApp

BSSID1
/RouteFinder

BSSID2
/MyTravelAdvisor

Information-Centric Forwarding
• We build on a modified version of NDN
• Forward messages to single-hop broadcasting (BSS) domains
• Single-hop operation

gameX
tripAdvisor

routeFinder

Name Prefix BSSID if

/travel/tripAdvisor #x #y tripAdvisor #1

/gaming/gameX #z gameX #2

Name Prefix BSSID if

/travel/routeFinder #x routeFinder #1

q Broadcast domains are considered as node interfaces
q FIB is populated with neighbouring BSSIDs

In Name Out

Internal
face #1

/a/b/c#t1#t2 BSSID1

BSSID2 /d/e/f#t3#t4 Internal
face #2

Data Chunck Name

2a3b69e43f9bd48937 /d/e/f#t3#t4

Prefix BSSID Face

/a/b/c BSSID1 Internal
face #1

/d/e/f BSSID2 Internal
face #2

Content Store PIT FIB

Server part of app
internalFace entry links

BSSID to specific app that
listens to this SSID.

One PIT entry per request

Feasibility – RouteFinder App

Setup
Mobility trace from 3300 users in a Stockholm
subway station throughout one hour

All users: 3300
KEBAB

Users (10%)

RouteFinder
App Users

Route Finder App

Taxi Share App / Carpooling

• Group commuters into taxis/vehicles locally
– User 1 wants to travel from A – C
– User 2 wants to travel from A – B, where B is along the

route A – C
– User 3 travels from A – D and so on

• Can’t think of many good reasons
not to do this locally...

Vision: An Edge ICN IoT Platform based on
Information-Centric Connectivity

• The long-term plan is to develop a platform for IoT
applications
– users can build applications or applets
– API should be lightweight and easy to use, e.g., IFTTT-

like
• Some applications already implemented in

Raspberry PIs – plan to extend to WiFi APs
through OpenWRT

How to implement KEBAPP?
Android implementation components

KEBAPP
Application

Activity

KEBAPP
Application

Service

KEBAPP Application Model

KEBAPP Application

KEBAPP framework

jndn (java libs)

WiFiDirect libs

jndn-
manager

Naming / partial matching
functions

Application model / functionalities

KEBAPP background service
KEBAPP
Foreground
app UI

NFD<->WiFiDirect interface

NDN
tables / routing /
fwd options

Service discovery / connectivity

Network devices

KEBAPP APP software

KEBAPP middleware

Android OS

NFD

Thanks!

Dr Ioannis Psaras
University College London

http://www.ee.ucl.ac.uk/~ipsaras/
i.psaras@ucl.ac.uk

BACKUP SLIDES

Incentives through
Micropayments

• Looks like a good fit for a virtual currency
• Blockchain ok to use when users are online

– Trickier for offline transactions
• We looked into offline micro-payment systems

– Main finding: there aren’t many :)
• Any pointers greatly appreciated

– Two good reasons for that
• Difficult to design
• Not many existing applications require offline
micropayments

Online vs Offline Micropayment

23

send.php

Figure 11. Communication on online transfer

This class is called during online transfer. The server retrieves sender name, receiver name,
encrypted transfer amount, and signature sent by the user, which is the sender side in the
transaction. A signature is generated by the user using the user private key so the server
needs to decrypt it using the user public key. If the signature can be verified, the server will
decrypt the message. Since the transfer amount is encrypted using the server public key, the
server retrieves the private key to be used for decryption.

The server needs to check first if the sender and the receiver are not the same person and if
they both exist in the database. If these are verified, the sender and receiver balance are
obtained from the database and the transaction will be processed as long as the sender
balance is sufficient. The server will update the sender and receiver balance according to the
transfer amount. After these are updated to the database, the response is constructed to the
sender, since the request is sent from this side. The sender balance is encrypted using their
public key while the signature is signed by the server private key. This information will be
added to the response. Unlike in a register or login response, the public and private key are
not sent again since these have been saved by the user during user login.

24

sendvoucher.php

Figure 12. Communication on offline transfer

This class is called by the receiver side when transferring an offline voucher that contains two
signatures. The parameters to access this class are voucher ID, sender name, receiver name,
transfer amount, sender signature, and receiver signature. The server decrypts the message
using the server private key to get the actual value of voucher ID, sender name, receiver
name, and voucher amount. The sender and receiver name will be checked if they are
registered in the database.

Since every voucher that has been processed successfully is saved in the server local storage,
the server needs to check if the voucher file has already existed in the storage based on
voucher ID in the filename. The voucher will not be saved if the transaction is failed. If there
is no file related to this voucher in the storage, the sender and receiver signature will be
verified using the sender and receiver public key. This process is required to check if the
voucher was really sent by the correct sender and receiver. Once the signature verification is
successful, the server will check if the sender has a sufficient balance to make the transfer
before updating the sender and receiver account balance in the database. For every
processing failure, an error message will be added instead. Because the request was sent by
the receiver side, the response will be generated to this user, containing the updated balance
that is encrypted using the user public key and a signature created by the server private key.

refresh.php

Figure 13. Communication on refresh

Online Mode Offline Micropayment

• Central trusted authority issues certificates
• Certificates trusted by nodes who pay with vouchers
• Vouchers later validated when users get back online

